Skip to main content

Lianne Cartee

December 19, 2016

We are working to establish a program which we believe is unique in the country. Our students are simultaneously students at two major universities with full privileges at both universities. NC State is home to a nationally ranked College of Engineering and Veterinary School, and UNC is home to the nationally ranked UNC hospital.

H. Troy Nagle

December 17, 2016

Professor Nagle focuses his research on biomedical sensors and medical devices. In recent years he has been active in research projects in machine olfaction. He is currently President of the IEEE Sensors Council. He served as IEEE President in 1994 and was elected a Fellow of the AIMBE in 1998.

Derek Kamper

December 17, 2016

Postdoc, Neurophysiology, Rehabilitation Institute of Chicago

He (Helen) Huang

December 16, 2016

Dr. Huang’s research interest lies in neural-machine interfaces for robotic prosthetic limbs and exoskeletons, wearer-robot interaction and co-adaptation, adaptive and optimal control of wearable robots, and human movement control.

Xiaogang Hu

December 16, 2016

Our Research focuses on the control and neuromechanical properties of the upper extremity after a central or a peripheral injury, such as a stroke or an amputation. Specifically, we focus on the following three research topics regarding the upper extremity neuromuscular system: the neural aspect, the mechanical aspect, and the applied aspect with a focus on rehabilitation.

Edward Grant

December 16, 2016

Dr. Grant researches into cognitive robotics, medical robotics, and intelligent control via wireless sensor networks. Projects under these topics include, robot colony control via evolutionary algorithms, mobile robot navigation and planning via received signal strength from “mote-like” wireless sensor networks, wearable sensing and control of venous blood flow, automated cell micro-actuation and micro-injection, musculoskeletal modeling and analysis for rehabilitation robotics.

Caterina Gallippi

December 16, 2016

A major research focus in the Gallippi laboratory is acoustic radiation force-based elastographic ultrasound technologies, which diagnose and monitor diseases by noninvasively interrogating the mechanical properties of tissue. We design custom imaging beam sequences that are implemented on clinical ultrasound imaging systems, and we develop novel signal and image processing methods to exploit the pertinent diagnostic information in our data. I have a particular interest in adaptive regression methods, including Principle Component Analysis and other Blind Source Separation techniques, as well as in multi-dimensional tissue motion estimation methods. We validate our methods in relevant animal models, and we translate them to clinical imaging.

Jason Franz

December 15, 2016

The overarching goal of our research program is to investigate musculoskeletal and sensorimotor mechanisms governing mobility impairment and falls risk due to aging and neurological injury and disease, and to introduce creative new rehabilitative approaches for preserving independent mobility and preventing falls. We use a highly integrative approach that combines quantitative motion analysis and electromyography with dynamic ultrasound imaging, computational simulation, and virtual reality.

Matthew Fisher

December 15, 2016

2011-2013 Post-doctoral Fellowship, Department of Orthopaedic Surgery, University of Pennsylvania

Bob Dennis

December 14, 2016

My current and future research in tissue engineering will focus on the following topics:
– Automated cell culture systems (for applying controlled interventions and monitoring the resulting function)
– Control of expression of adult muscle phenotype (adult myosin isoforms: fast twitch & slow twitch)
– Compliant tendons (for mechanical impedance matching and the reduction of stress concentrations)
– Motor unit level control of engineered skeletal muscle constructs (a collaboration with CNCT in EECS)
– Nerve-muscle interface (to provide nerve-derived trophic factors and to aid in expression of adult phenotype)
– Angiogenesis and perfusion (to allow large tissue cross sections).