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12 CHAPTER 2 The Optics of Microscope Image Formation
Abstract
Although geometric optics gives a good understanding of how themicroscope works,

it fails in one critical area, which is explaining the origin of microscope resolution.

To accomplish this, one must consider the microscope from the viewpoint of phys-

ical optics. This chapter describes the theory of the microscope-relating resolution to

the highest spatial frequency that a microscope can collect. The chapter illustrates

how Huygens’ principle or construction can be used to explain the propagation of

a plane wave. It is shown that this limit increases with increasing numerical aperture

(NA). As a corollary to this, resolution increases with decreasing wavelength be-

cause of how NA depends on wavelength. The resolution is higher for blue light than

red light. Resolution is dependent on contrast, and the higher the contrast, the higher

the resolution. This last point relates to issues of signal-to-noise and dynamic range.

The use of video and new digital cameras has necessitated redefining classical limits

such as those of Rayleigh’s criterion.
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INTRODUCTION

Although geometric optics gives us a good understanding of how the microscope

works, it fails in one critical area: explaining the origin of microscope resolution.

Why is it that one objective will resolve a structure whereas another will not? This

is the question we will examine in this chapter. To accomplish this, we must consider

the microscope from the viewpoint of physical optics. Useful further references are
ncidental connection between the lives of Jean Baptiste Fourier and Thomas Young that

ics. In 1798, Fourier joined Napoleon’s army during the invasion of Egypt. Word of the
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iterranean.OnAugust 1,his luckchanged.TheFrench fleetwas anchored in awide crescent

oukir,37-kmeastofAlexandria.Secureontheir shorewardside, theFrenchhadmovedall of
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FIGURE 2.1

Superposition of sine waves: dotted line, sin(x); dashed line, the condition of constructive

interference sin(x) þ sin(2p þ f); solid line, the condition of destructive interference

sin(x) þ sin(x þ p � f) where f � 1.

132.1 Physical Optics: The Superposition of Waves
Inoué & Spring, 1997; Jenkins & White, 1957; Sommerfeld, 1949a; Born & Wolf,

1980 for the optics of microscope image formation.
2.1 PHYSICAL OPTICS: THE SUPERPOSITION OF WAVES
Let us consider a simple type of wave, namely, a sine or cosine wave, such as that

illustrated in Fig. 2.1. Mathematically, the equation of the wave shown in Fig. 2.1

(dotted line) is

yðtÞ ¼ y0 sinðotÞ: (2.1)

Here, we are considering the abstract concept of a wave in general. However, a

clear example of a wave is the light wave. Light is a wave in both space and time. The

equation for its electric field vector, E, takes the form

Eðx; tÞ ¼ E0 sinðkx � otÞ; (2.2)

whereo (the frequency in radians per second) is related to the frequency of the light, n,
by the relationo¼ 2pn; k is thewave number, which is related to thewavelength, l, by
the relation k¼ 2p/l¼ 2pn/c, where c is the speed of light; and E0 is the amplitude. In
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Appendix A, we show that Eq. (2.2) represents the unique solution of the wave equa-

tion, which governs optics. Two additional points are worthmentioning here: First, that

the intensity of light is the square of the electric field vector; second, that the spatial and

temporal components of the light wave can be separated. As a result, you can view light

as being a spatial sine or cosine wave moving through space with time.

Now let us suppose that we have two simultaneous waves with the same

frequency,

yðtÞ ¼ y0 sinðotÞ þ y1 sinðotþ fÞ; (2.3)

but that are phase-shifted with respect to one another with a phase shift f. The com-

posite wave is determined by pointwise addition of the individual waves, a principle

known as the superposition theorem. When the two waves are completely in phase

(i.e., f ¼ 0), we have the condition of constructive interference shown in Fig. 2.1

(dashed line). When the two waves are 180� out of phase, we have the condition

of destructive interference shown in Fig. 2.1 (solid line).

This can be most readily shown by adopting the exponential form of the wave. In

general, a complex number can be expressed in one of two ways, the right- and left-

hand sides of Eq. (2.4):

eiy ¼ cos yþ i sin y: (2.4)

Thus, our sine wave may be expressed as

Eðx; tÞ ¼ E0 Refe�iðkx�otÞg;
Eðx; tÞ ¼ E0 Refe�ikxeþiotg; (2.5)

where Re stands for “the real part of.”
2.2 HUYGENS’ PRINCIPLE
In 1678, the Dutch physicist Christiaan Huygens (1629–1695) evolved a theory of

wave propagation that remains useful in understanding such phenomena as reflec-

tion, refraction, interference, and diffraction. Huygens’ principle is that:

All points on a wave front act as point sources for the production of spherical

wavelets. At a later time the composite wave front is the surface which is tangen-

tial to all of these wavelets.

(Halliday & Resnick, 1970)

In Fig. 2.2, we illustrate how Huygens’ principle or construction can be used to

explain the propagation of a plane wave. We have chosen this example because it

seems otherwise counterintuitive that one can construct a plane out of a set of finite

radius spheres.

Expressed in this way, Huygens’ principle is an empirical construct that will not

explain all aspects and phenomena of light. Clearly, a complete description requires

the application of James Clerk Maxwell’s (1831–1879) wave equation and the



FIGURE 2.2

Huygens’ construct illustrating how a plane wave front at time t ¼ 0 propagates as a plane

wave front at time t.

152.3 Young’s Experiment: Two-Slit Interference
boundary conditions of his electromagnetic theory. In Appendix A, we demonstrate

that Eq. (2.2) is, indeed, a solution to Maxwell’s wave equation. Gustav Kirchoff

(1824–1887) has developed a more robust form of Huygens’ principle that

incorporates electromagnetic theory. In Appendix B, we develop the rudiments of

Kirchoff’s approach. Subsequently, in Appendix C, we use Kirchoff’s solution to

develop a mathematical treatment of the Airy disk. The reader is referred to

Sommerfeld (1868–1951) (Sommerfeld et al., 1949) for an excellent description

of diffraction theory.
2.3 YOUNG’S EXPERIMENT: TWO-SLIT INTERFERENCE
One usually sees Huygens’ principle described using the quotation above. In prac-

tice, however, it is more often applied by considering a wave surface and then asking

what the field will be on at some point, P, away from the surface. The composite field

will be given by the sum of spherical wavelets reaching this point at a given time.

Because the distances between points on the surface and point P vary, it must be

the case that for them to arrive simultaneously, they must have been generated at

different points in the past. In this context, Huygens’ principle is really an expression

of the superposition theorem.

This was the approach taken by Thomas Young (1773–1829) in 1801 in explain-

ing interference phenomena (Young, 1801). Young’s now classic experiments dem-

onstrated the fundamental wave nature of light and brought Young into conflict with

Sir Isaac Newton (1643–1727) and his Corpuscular Theory of Light. Young’s exper-

iment is illustrated in Fig. 2.3. Young used a slit at A to convert sunlight to a coherent

spherical wave (Huygens’ wavelet). Two slits are symmetrically positioned on B

relative to the slit at A. Huygens’ wavelets propagate from the two slits and will,



FIGURE 2.3

Young’s double-slit experiment in terms of Huygens’ construct.

FIGURE 2.4

Young’s double-slit experiment showing the source of the phase shift geometrically.
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at various points, constructively and destructively interfere with one another.

Figure 2.4 considers some arbitrary point P, a distance y from the center of the sur-

face C, which is a distance D from B. If the distance between the slits is d, the path
length difference between the twowavelets atPwill be d sin(y) and intensity maxima

caused by constructive interference will occur when

d sinðyÞ ¼ ml; (2.6)



FIGURE 2.5

Young’s double-slit interference pattern.

172.3 Young’s Experiment: Two-Slit Interference
wherem¼ 0, 1, 2, 3, and so forth. The pattern that Young saw is shown in Fig. 2.5 and

is referred to as the double-slit interference pattern. One clearly observes the alter-

nating intensity maxima and minima. The maxima correspond to the angles y given

by Eq. (2.4).

It is worthwhile to examine this problemmore closely and to determine the actual

intensity profile of the pattern in Fig. 2.5. Huygens’ principle promises us that it

derives from the superposition theorem. If the time-dependent wave from slit 2 is

E2 ¼ E0 sin ot and the wave from the slit 1 is E1 ¼ E0 sin(ot þ f), then the

time-dependent wave at point P is:

E ¼ E1 þ E2 ¼ E0ðsinotþ sin ½otþ f�Þ; (2.7)

where again f ¼ a sin y. Eq. (2.5) may be algebraically manipulated as follows:

E ¼ E0ðsinotþ sinot cosfþ cosot sinfÞ
¼ E0ðsinot ð1þ cosfÞ þ cosot sinfÞ: (2.8)

The intensity is given by E2, therefore,

I ¼ E2
0ðsin2otð1þ cosfÞ2 þ cos2ot sin2fþ 2sinot cosot sinf½1þ cosf�Þ:

(2.9)
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What we observe physically is the time-averaged intensity, IAV. Recalling that

the time average of sin2ot and cos2ot is 1/2 whereas that of 2sin ot cos ot ¼ sin

2ot ¼ 0, we obtain

IAV ¼ E2
0

2
ð½1þ cosf�2 þ sin2fÞ (2.10)

2

IAV ¼ E0

2
ð1þ 2cosfþ cos2 fþ sin2 fÞ

¼ E2
0ð1þ cosfÞ

¼ 2E2
0 cos

2 f
2
:

(2.11)

Considering Fig. 2.4, because the angle y is small,

f ¼ a sin y ’ a tan y ¼ ay

d
; (2.12)

and therefore,

IAV ¼ 2E2
0 cos

2 ay

2d

� �
: (2.13)

In deriving Eq. (2.11), we have ignored the 1/r2 falloff of intensity. To allow for

this, one would have to replace E in Eq. (2.5) by E/r. That is, we assume a spherical

rather than a plane wave. This, of course, causes the intensity of the bands to fall off

with increasing y.
In this derivation, one sees the fundamental application of the superposition the-

orem to derive the composite wave. In this case, the application is relatively straight-

forward as thewave atP is the superposition of only twowaves. In other cases, such as

the single-slit diffraction example that follows, the composite is a superposition of an

infinite number of waves, and the summation becomes an integration. In Appendix B,

we consider Kirchoff’s generalization of this problem to a scalar theory of diffraction.
2.4 DIFFRACTION FROM A SINGLE SLIT
The double-slit interference experiment is an example of Huygens’ principle of su-

perposition where we have only two generating sites. A related interference phenom-

enon is that of single-slit diffraction, which is illustrated in Fig. 2.6. Here, we

envision a plane wave impinging on a narrow slit of width a. We imagine the slit

divided into infinitesimally narrow slits separated by distance dx, each of which acts
as a site that generates a Huygens’ wavelet. Two neighboring wavelets generate par-

allel wavelets. A lens collects these wavelets and brings them to a focus at the focal

plane. We consider two wavelets from neighboring regions of the slit, which ulti-

mately converge on point P of the focal plane. The path difference will be dx sin

(y). Calculation of the resulting interference pattern referred to as single-slit



FIGURE 2.6

The single-slit experiment showing the source of the phase shifts geometrically.

192.5 The Airy Disk and the Issue of Microscope Resolution
Fraunhoffer (we define in the appendixes what we mean by Fraunhoffer diffraction)

diffraction requires summing or integrating over the entire surface of the slit and is

illustrated in Fig. 2.7. Effectively, the single slit acts as an infinite set of slits. Indeed,

you are probably more familiar with diffraction produced by a grating, which is an

infinite set of equally spaced slits separated by some fixed distance.
2.5 THE AIRY DISK AND THE ISSUE
OF MICROSCOPE RESOLUTION
We are now in a position to turn our attention to how interference affects microscope

images: How does a microscope treat a point source of light? You might ask, why do

we care? We care because ultimately all objects can be represented as the sum of

an infinite set of point sources. If we know how the microscope treats (distorts, if

you will) a point object, we know how it treats any object. This is the concept of

the point spread function because a point of light is confused or spread out by both

the optical and the electronic systems of the digital or video microscope system. We

will encounter this concept progressively throughout this volume. This spreading is

an example of what mathematicians refer to as convolution. In Chapter 9 by Salmon

et al., this volume, we will be introduced to the concept of convolution.



FIGURE 2.7

The single-slit diffraction pattern.
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Unfortunately, the reverse process, which we might refer to as deconvolution, is not

mathematically trivial. Later in this chapter, we will introduce the concept of Fourier

series and transforms, both as an introduction to the idea of spatial frequencies and to

provide the mathematical tools necessary to understand deconvolution. The concept

of deconvolution using Fourier transforms will finally be considered in Chapter 16

by Salmon and Tran, this volume; and Chapter 14 by Wolf et al., this volume.

In Fig. 2.8, we illustrate how a microscope views a point source of light. One

expects from consideration of geometric optics that a point of light at A will be fo-

cused by the objective to a point on the image plane. However, Huygens teaches us

that the two points on the wave front act as generation sites for Huygens’ wavelets.

Although most of the light goes to the center point on the image plane, where it

constructively interferes to produce a bright spot, some of it also goes to other points.

At the second point shown in the figure, the two waves will be phase-shifted. The

result is an interference pattern on the image plane. Rather than focusing the point

source to a spot, the actual image shown in Fig. 2.9 is known as the Airy disk, after

George Biddell Airy (1801–1892). The ability of the microscope to resolve two spots

as two ultimately relates to how sharply the Airy disks are defined (Fig. 2.10). For

self-luminous point sources, such as the ones obtained in fluorescence microscopy,

the Airy disks are independent and do not interfere with one another.

An empirical criterion for resolution for such self-luminous objects that is related

to the separation where the primary maximum of the second Airy disk coincides with

the primary minimum of the first is



FIGURE 2.9

The Airy disk: Notice how the intensity of the secondary ring is only about 2% of the intensity

of the primary maximum. The ability to see this ring in the microscope offers an

empirical test of noise rejection in the microscope.

FIGURE 2.8

A point of light viewed in the microscope showing how interference leads to the Airy disk

pattern.

212.5 The Airy Disk and the Issue of Microscope Resolution



FIGURE 2.10

Defining resolutions as the ability to distinguish two Airy disks: as the disks come closer, the intensity dip between them becomes smaller.

Resolution definitions such as Rayleigh’s criteria set are based on the ability of the human eye to detect this dip. Other criteria may be more

appropriate for digital systems.
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r ¼ 1:22l0
2NAobj

(2.14)

and is known as Rayleigh’s criterion. The NA (numerical aperture) of an objective is

related to the collection angle y and is given by

NA ¼ n sinðyÞ; (2.15)

where n is the index of refraction. For bright field images, the point sources will be

partially coherent, and the resolution will also be dependent on the NA of the con-

denser. Thus, for bright field point sources, resolution is given by

r ¼ 1:22l0
NAobj þ NAcond

: (2.16)

In a modern context, it is important to recognize that Rayleigh’s criterion is em-

pirical and ultimately based on the human eye’s ability to resolve intensity differences.

It asks the question, or more accurately, states the answer to the question, what is the

minimum intensity dip between the two maxima required for the human eye to resolve

them as two Airy disks?With modern image detectors and image processing, it is pos-

sible to push these limits. We will explore this issue further in subsequent chapters.

On deeper consideration of Fig. 2.8, the reader may be tempted to cry foul. There

is a point at which the spherical wavelets emitted from the two points destructively

interfere, but what about wavelets from all of the other generating centers between

these points? In reality, we must consider and superimpose all of the wavelets to gen-

erate the composite field at any point P. In Appendix B, we will discuss Kirchoff’s

approach to this problem, and in Appendix C, we will apply the approach to the prob-

lem of the Airy disk.
2.6 FOURIER OR RECIPROCAL SPACE: THE CONCEPT
OF SPATIAL FREQUENCIES
The issue of resolution also relates to the amount of contrast (the difference between

light and dark) and the sharpness of edges. To understand these questions, we must

take a detour into what may at first appear to be a strictly mathematical domain. This

is the concept of Fourier, or reciprocal, space. This concept is fundamental to under-

standing the optics of microscope image formation.

Wemust begin with the concept of a spatial frequency. Consider, for instance, the

picture in Fig. 2.11A. When we look at this (or any) scene, our first inclination is to

say that the sizes of the objects are random. On closer examination, we realize that

this is not really the case. Every scene has certain characteristic spacings in it. We

have drawn some of these characteristic frequencies as sine2 waves over the figure.

Mathematically, these spacings are referred to as spatial frequencies (more accu-

rately, we might refer to spatial wavelengths, L, and define the spatial frequencies

as 2p/L). In every scene, certain spatial frequencies dominate over others. This



FIGURE 2.11

(A) Every object or image has characteristic spatial frequencies. (B) A line scan across the

books in Fig. 2.11.
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concept may seem very abstract at first. When you think about it, one point that you

will probably recognize is that fine detail is described by high spatial frequencies. So

in some sense, the highest spatial frequency, which we can detect, must be related to

the resolution limit of our optical system. If you take a magnifying glass and examine

Fig. 2.11A closely, you will see dots. What this tells us is that there is a cutoff, a

highest spatial frequency, beyond which the printer did not need to go to accurately

portray the photograph. This is very clear in digital photography. When you look at a

high-resolution digital photograph, it is nice and sharp; as you zoom in, however, you

will eventually see the pixels. The maximum spatial frequency used in the photo-

graph is 2p divided by the interpixel distance.

One might think that although light waves can be represented by sine waves, or

more accurately a sum of sine waves, this might not be the case for all waves. Let us

phrase this differently: Can we put this abstract concept of spatial frequencies into a

coherent mathematical context? To approach this problem, let us simplify it a bit.

Suppose that rather than dealing with the two-dimensional image of Fig. 2.11A,

we scan one horizontal line across this image and look at the intensity as a function

of position. Such a line is shown in Fig. 2.11B. Again, the information is not random.

We can clearly see characteristic spatial frequencies.
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Jean-Baptiste Fourier (1768–1830), in the early nineteenth century, demonstrated

the remarkable fact that any wave or function could be described as a sum of sine

waves (actually, sine þ cosine waves). Rather than work with the scan of

Fig. 2.11B, let us consider a simpler but more challenging pattern, namely, that of

a step function, as illustrated below in Fig. 2.12A—a step function that is an
FIGURE 2.12

Fourier’s construction of a step from a composite of sine waves: (A) sin x, (B) sin x þ 1/3

sin 3x, (C) sin x þ 1/3 sin 3x þ 1/5 sin 5x, (D) sin x þ 1/3 sin 3x þ 1/5 sin 5x þ 1/7 sin

7x, (E) sin x þ 1/3 sin 3x þ 1/5 sin 5x þ 1/7 sin 7x þ 1/9 sin 9x, and (F) up to the term

1/23 sin 23x. Notice that even in (F) there is ringing of the intensity pattern.
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alternating pattern of white and black bands. One might think that nothing is farther

from a sine wave.

However, think about it a little more closely. If we draw a sine wave with the

same spacing, it approximates the step function (Fig. 2.12A). This is the lowest spa-

tial frequency, 2p/L. We next try to fill in the gaps by adding some amount of a sine

wave with spatial frequency 3(2p/L) (Fig. 2.12B). As one successively adds sine

waves of shorter and shorter wavelength [spatial frequencies m(2p/L), where m is

odd] (Fig. 2.12C–F) in the appropriate proportions, the resulting sum looks more

and more like a step function. To achieve perfect match, one has to use an infinite

number of sine waves. However, as the amplitudes of the waves decrease rapidly and

monotonically, any given degree of approximation can be achieved with a finite

number of sine functions. It is significant to note that when one cuts off the summa-

tion at a finite number of sine waves, the resultant wave shows oscillations or “ring-

ing,” which is most apparent at the edge of the step (Fig. 2.12F). As we will see, the

optical ringing at the edges of objects in the light microscope is caused by incomplete

reconstruction of Fourier series. Indeed, microscopes always act as low-pass filters

with some maximum spatial frequency making it through, and as we shall see, is the

basis of resolution in the microscope.

In Fig. 2.13, we show the amplitudes of the spatial frequencies of the step func-

tion. Such a plot is referred to as the Fourier transform of the original function. Note

that in the case of the step function, the function is not continuous but rather discrete.
FIGURE 2.13

The amplitudes of the frequency terms: this is the so-called Fourier transform of the step

function.



FIGURE 2.14

The Fourier series of Fig. 2.13 shown as an image; (A–E) correspond to Fig. 2.13. In (F), we

have removed the sin x term, which causes a doubling of the frequency pattern.

272.6 Fourier or Reciprocal Space: The Concept of Spatial Frequencies
That is, only those spatial frequencies that are odd numbers have nonzero amplitude.

In fact, for a spatial frequency m, the amplitude is 1/m.
In Fig. 2.14, we use the Fourier series to recreate the step function as an image. In

Fig. 2.14A, we have generated an image with a sinusoidally varying intensity. We

can get a sense of the bars of the step function, but the edges are very fuzzy. In

Fig. 2.14B–E, we progressively add the sin 3�, sin 5�, sin 7�, and sin 9� terms.

With the addition of each higher-order spatial frequency, the edges become more

and more distinct. However, in each case we can see ringing at the edges because

we lack higher order terms.

Next we ask the question, what will happen if we eliminate the first term in the

series? This is shown in Fig. 2.14F. What happens is that we now have a perfectly

reasonable looking step function, only its bars are now twice as close as before.

In this discussion, we have considered a one-dimensional Fourier series. One can

also perform Fourier transforms on two-dimensional patterns (i.e., images) or even

three-dimensional patterns such as a z-stack of images. In Appendix A, we develop

the mathematics of Fourier series and transforms. Reducing a wave to a Fourier se-

ries is derived, following Carl Friedrich Gauss (1777–1855), as being essentially

equivalent to a problem in nonlinear least squares curve fitting: the solution of

the step function is derived explicitly, the integral form is developed, and finally,

the application of Fourier transforms to solving the wave equation of electrodynam-

ics and optics is discussed.
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2.7 RESOLUTION OF THE MICROSCOPE
Physical systems such as microscopes tend to pass only a certain set of spatial fre-

quencies. In a sense, the highest frequency passed becomes a measure of resolution.

An object such as diffraction grating, which is essentially the step wave shown in

Fig. 2.14, requires all spatial frequencies to see it correctly. How a microscope treats

such an object is illustrated in Fig. 2.15. When the grating is illuminated with a bun-

dle of planar light, say at the center, the zeroth-order undiffracted light propagates

straight through as one bundle, whereas higher orders are diffracted and propagate as

parallel bundles at appropriate angles. Because all of these bundles are parallel, they

will be focused by the objective at the back focal plane, with higher orders appro-

priately displaced from the center. A Fourier transform of the image forms at the
Real image of grating

Diffraction
pattern

Grating

Parallel light bundle

Image plane

Back focal plane

Objective lens

Object plane

FIGURE 2.15

In the microscope, the resolution limit results from the microscope’s inability to collect all

spatial frequencies. Objects act as diffraction gratings and Fourier transform of the

object forms at the back focal plane.
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back focal plane. These bundles recombine at the image plane to form a real image of

the diffraction grating. You can see the problem immediately: Not all of the orders

will make it through the objective. There is a cutoff and higher orders fail to enter the

objective. The larger the collection angle (the NA) of the objective, the higher the

cutoff and the higher the resolution. So far, we have discussed what is going on

at the center of the object. The situation becomes more complex as one moves away

from the center. The cutoff frequency on the two sides becomes asymmetric. The

resolution limit is effectively defined by the highest spatial frequency that enters

the objective.

In Fig. 2.16, we image the back focal plane for Fourier transform of biological

specimens. We have chosen specimens with some well-defined structure.
FIGURE 2.16

Fourier patterns at the back focal plane of the objective for: (A) a Ronchi ruling, (B) a diatom,

and (C) a muscle fiber. Courtesy of Greenfield Sluder.
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Figure 2.16A shows a diatom and Fig. 2.16B a muscle section. For comparison, we

also show the specimens viewed in the image plane.
2.8 RESOLUTION AND CONTRAST
We have previously seen how resolution can be defined in terms of our ability to

distinguish between two Airy disks. As the disks come closer and closer, which cor-

responds to trying a higher and higher spatial frequency, the contrast between the

two disks decreases. The resolution limit is reached when the contrast between

the two points becomes sufficiently small such that they can no longer be distin-

guished as two separate points. We see that image contrast and resolution become

highly intertwined factors. This is illustrated in Fig. 2.17, where sine waves of in-

creasing spatial frequency (left to right) and increasing contrast (bottom to top)

are displayed as an image; the higher the contrast, the higher the detectable spatial

frequency. In Fig. 2.18, we show this same fact for hypothetical microscope
FIGURE 2.17

Increasing contrast increases resolution (the highest detectable spatial resolution).

FIGURE 2.18

The relationship between contrast (relative modulation) and resolution (highest discernable

spatial frequency) for objectives with NA ¼ 0.25, 0.6, 0.9, and 1.3.
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objectives. Resolution (highest collected spatial frequency) clearly increases with

increasing NA. However, for a given objective, the greater the contrast, the greater

the resolution becomes.
CONCLUSIONS

In this chapter, we have described Abbe’s theory of the microscope-relating resolu-

tion to the highest spatial frequency that a microscope can collect. We have shown

that this limit increases with increasing NA. As a corollary to this, resolution in-

creases with decreasing wavelength because of how NA depends on wavelength.

The resolution is higher for blue light than for red light. Finally, we see that resolu-

tion is dependent on contrast and that the higher the contrast, the higher the

resolution.

Ultimately, this last point relates to issues of signal-to-noise and dynamic range.

The use of video and new digital cameras has necessitated redefining classical limits

such as those of Rayleigh’s criterion. In subsequent chapters, we will further explore

these critical issues.
2.9 APPENDIX A
2.9.1 Fourier series
In this chapter, we indicated that a light wave could be represented by the equation

Eðx1tÞ ¼ E0e
�iðkx�otÞ: (2.A1)

One might ask, where this comes from? We know that the mathematical form of

the wave must satisfy Maxwell’s wave equation, and we can, indeed, show that it

is a solution of this equation. Yet we may still ask to what extent is it the only

solution? It was considerations such as these that led to the development of

Fourier series and transforms. At the end of this appendix we will see why. We

begin by exploring briefly the concept of the Fourier series and their importance

in optics. For a more extensive discussion, the reader is referred to the elegant treat-

ment by Arnold Sommerfeld in his book Partial Differential Equations in Physics
(Sommerfeld, Sommerfeld, 1949b).

Suppose that one has an arbitrary function, a wave form, f(x), which is defined

over the interval of �p to p (by suitable rescaling, any interval �L/2 to L/2 can

be redefined to meet this criterion). We next suppose that this function can be ap-

proximated by a function Sn(x), which is the sum of a series of n sine waves and

n cosine waves with coefficients Am and Bm plus a constant A0. That is,

SnðxÞ ¼ A0 þ
Xn
m¼1

fAm sinðmxÞ þ Bm cosðmxÞg: (2.A2)
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The problem, then, is to determine the 2nþ1 coefficients, Am and Bm, that define the

Sn(x). This problem is equivalent to the problem of fitting experimental data to a

curve or mathematical function. As in the curve-fitting problem, we recognize that

for every value of x, there is a deviation or difference d(x) between the approximation

Sn(x) and the function f(x). That is,

f ðxÞ ¼ SnðxÞ þ dðxÞ: (2.A3)

The goal is to minimize the sum of the squares of the deviations over the entire

interval �p to p. That is, we seek to minimize w2, where

w2 ¼ 1

2p

Z þp

�p
d2nðxÞdx: (2.A4)

Minimization requires that all of the partial derivatives of w2 with respect to the Am’s

and the Bm’s be simultaneously equal to 0. For an arbitrary value ofm, we have that,

� @w2

@A2
m

¼ 1

p

Z þp

�p
ff ðxÞ � SnðxÞg cosðmxÞdx ¼ 0 and

� @w2

@B2
m

¼ 1

p

Z þp

�p
ff ðxÞ � SnðxÞg sinðmxÞdx ¼ 0:

(2.A5)

One can then solve Eq. (2.A5) for the 2n þ1 coefficients by putting Eq. (2.A2) into

Eq. (2.A5) and making use of the orthogonal properties of the sine and cosine func-

tions, namely, that:

1

p

Z þp

�p
cosðpxÞ sinðqxÞdx ¼ 0 for ðall values of p and qÞ; (2.A6a)

Z þp
1

p �p
cosðpxÞ cosðqxÞdx ¼ 0 for p 6¼ q;

¼ 1 for p ¼ q;

(2.A6b)

Z þp
1

p �p
sinðpxÞ sinðqxÞdx ¼ 0 for p 6¼ q;

¼ 1 for p ¼ q:

(2.A6c)

Substituting the conditions of Eq. (2.A6) as well as the trivial condition that

1

2p

Z þp

�p
dx ¼ 1; (2.A7)

we find that

Am ¼ 1

p

Z þp

�p
f ðxÞ cosðmxÞdx; (2.A8a)

Z þp
Bm ¼ 1

p �p
f ðxÞ sinðmxÞdx; (2.A8b)



332.9 Appendix A
A0 ¼ 1

2p

Z þp

�p
f ðxÞdx: (2.A8c)

The 2n þ1 coefficients can be determined by means of Eq. (2.A8).

A rigorous mathematical treatment must demonstrate three critical points: that as

n ! 1, then w2, indeed d(x) for all values of x, goes to 0; that a solution exists; and

that the solution is unique. Here, we will refer the reader to Sommerfeld et al., 1949

on these three points and go on to examine the problem of the step function.

The step function is given by

f ðxÞ ¼ �1 for �p < x < 0

f ðxÞ ¼ þ1 for 0 < x < þp:
(2.A9)

Before applying Eqs. (2.A7) and (2.A8), we recognize that as we are centering the

step function around a DC level of 0 then A0 ¼ 0. Furthermore, we recognize that as

the function must have a node at�p, 0, andþp, the function is a series in sines with
odd coefficients,m. This last condition means that all of theBm’s equal 0 and theAm’s

equal 0 where m is even. Inserting Eq. (2.A9) into Eq. (2.A8a) gives us the Fourier

series for the step function, namely,

f ðxÞ ¼
X1
m¼0

1

2mþ 1

� �
sin½ð2mþ 1Þx�: (2.A10)

Related to the Fourier series is the concept of the Fourier transform. The function in

real space is described by f(x). We alternatively speak of the function being described

in frequency or reciprocal space. This frequency space description is referred to as

the Fourier transform, JðnÞ ¼ Jff ðxÞg, of the function. For the step functions,

JðnÞ ¼ 0 except for n ¼ 2m þ 1, where JðnÞ ¼ 1=ð2mþ 1Þ and m is an integer.

For completeness we also speak of the inverse Fourier transform J�1. This leads

to the trivial identity that

J�1½Jff ðxÞg� ¼ f ðxÞ: (2.A11)

The requirement that the function have nodes at �p, 0, and þp, or more

generally, the requirement that the function is defined over a finite interval with

specific boundary values, leads to series like that of Eq. (2.A9) wherein the

series contains only a subset of all possible sine waves defined by the eigenvalues

m. In the more general case, all possible sine and cosine waves represent

possibilities, and the summation in the equation is replaced by an integral. In such

cases, it is more convenient to use the exponential form of the wave, eikx. The con-

nection between this representation and the sine/cosine representation has already

been discussed in the text of the chapter and is contained in the trigonometric

identities

sinðkxÞ ¼ eikx � e�ikx

2i
; (2.A12a)
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cosðkxÞ ¼ eikx þ e�ikx

2i
: (2.A12b)

We may then define the Fourier transform of the function f(x) as

JðnÞ ¼ 1ffiffiffiffiffiffi
2p

p
Z þ1

�1
f ðxÞe�inxdx; (2.A13a)

and the inverse Fourier transform by

J�1ðxÞ ¼ 1ffiffiffiffiffiffi
2p

p
Z þ1

�1
JðnÞeinxdn: (2.A13b)

We have here derived the concept of Fourier series and Fourier transforms as a

means of introducing the fact that the diffraction pattern is the Fourier transform of

the object and that the diffraction pattern may be observed at the back focal plane of

the microscope objective. As the reader will see in subsequent chapters (i.e.,

Chapter 9 by Salmon et al., this volume; Chapter 16 by Salmon and Tran, this

volume; and Chapter 14 by Wolf et al., this volume), the Fourier transform becomes

a powerful tool in digital deconvolution techniques to remove out-of-focus fluores-

cence. Ultimately, this results from the fact that the Fourier transform of the object is

the diffraction pattern observed at the back focal plane of the objective. Indeed, some

laboratorieshavecreatedFourier filters of the imagenot bydigital transformationbut by

physically masking specific frequencies at the back focal plane (Hui & Parsons, 1975).

Fourier transforms also are very powerful tools for solving partial differential

equations such as the wave equations. Let us suppose, as an example, that we have

an electromagnetic wave, which is propagating in the x-direction and polarized so

that it is confined to the z-direction. Then we can write the wave equation for the

electric field as:

@2E

@t2
¼ c2

@2E

@z2
: (2.A14)

We next Fourier transform both sides of Eq. (2.A14). If we reverse the order of in-

tegration and differentiation, we obtain

d2JðEÞ
dt2

¼ �n2c2JðEÞ: (2.A15)

Note that this is a simple rather than a partial differential equation. We can then

write,

JðEÞ ¼ J0ðEÞe�inct: (2.A16)

All that remains to be done to determine E is to inverse Fourier transform

Eq. (2.A14). Let us assume that E(x)¼ E0e
ikx. Fourier has already taught us that this

is not a big assumption, as even if it is not true, it will be the case that the wave can be

represented as a sum or distribution of terms E0e
ikx. Then the Fourier transform is

determined by putting Eq. (2.A11) into Eq. (2.A14):
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JðEÞ ¼ E0e
�inct 1ffiffiffiffiffiffi

2p
p

Z þ1

�1
eiðk�nÞxdx: (2.A17)

The integral Eq. (2.A17) is the Dirac Delta Function given by

dðk � nÞ ¼ 1ffiffiffiffiffiffi
2p

p
Z þ1

�1
eiðk�nÞxdx; (2.A18)

then

JðEÞ ¼ E0e
�inctdðk � nÞ: (2.A19)

The critical property of the Dirac Delta Function is that it is 0 for all values of s except
for s ¼ k, where the function has the value of 1.

We next inverse Fourier transform Eq. (2.A19)

E ¼ E0

Z
e�iðnct�nxÞdðk � nÞdn: (2.A20)

The properties of the Dirac Delta Function lead us to

E ¼ E0e
iðkx�kctÞ; (2.A21)

remembering that

k ¼ 2p
l

¼ 2pu
c

¼ o
c
: (2.A22)

We obtain

E ¼ E0e
iðkx�otÞ: (2.A23)

We have now come full circle. We have shown that eikx is a solution to the spatial

part of the wave equation. We have further shown that any solution can be repre-

sented as a Fourier sum or distribution of such solutions. Finally, we have used

the Fourier transform to demonstrate that given the form eikx of the spatial depen-

dence, e�iwt must be the solution of the temporal dependence.
2.10 APPENDIX B
2.10.1 Kirchoff’s scalar theory of diffraction: Recasting Huygens’
principle in an electrodynamic context
Our goal in this appendix is to describe Kirchoff’s formulation of Huygens’ principle

in terms of electrodynamic field theory. Here we will follow the derivation of

Sommerfeld in his book Optics, Lectures on Theoretical Physics (Sommerfeld et al.,

1949). We present an outline of the theory, and the reader is referred to the original

formore details. Other texts with excellent discussions of this problem and the problem

of the diffraction pattern from a circular aperture are An Introduction to Fourier Optics
(Goodman, 1968) and Electrodynamics (Jackson, 1975). The latter is particularly
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The generalized condition of an opaque surface s with an aperture s.
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valuable as it treats the full vectorial solution rather than the scalar approximation. The

reader is further referred to Principles of Optics (Born & Wolf, 1980).
2.10.2 Generalizing the problem
Figure 2.A.1 represents a generalized view of diffraction problems. We have a point

P and a surface. The surface consists of an opaque region, s, and an aperture region,
s. The basic question is how the field at P relates to the field in the aperture, s.

For mathematical purposes, we define an exterior and an interior to the surface

and we create a second infinitesimally small spherical surface K around the point P.
This serves to isolate the singularity atP and to create a closed surface for purposes of

investigation. In the figure, dn represents the normal to the surface at any point r.
2.10.3 Scalar spherical waves
In this chapter, we have dealt with plane waves of the form eikx, which depend only

on the coordinate x. Here we must deal with a scalar spherical wave, which depends

only on the radial value r. Such waves must, in general, be solutions of the equation

1

r
� @

2ðruÞ
@r2

þ k2u ¼ 0: (2.B1)

Equation (2.B1) is the wave equation in spherical coordinates assuming spherical

symmetry, that is, no angular dependence.

The so-called principal solution of Eq. (2.B1) has the form

u ¼ 1

r
eikr : (2.B2)
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2.10.4 Green’s theorem
Here we need to integrate over the surface s to find our solution. This is accom-

plished using Green’s function, G, to find the solution, which we call vp for the field
at P. In general, Green’s theorem tells us that

Z
G
1

r

d2rv

dr2

� �
� v

1

r
� d2rG

dr2

� �
dt ¼

Z
G
@v

@n
� v

@G

@n

� �
ds; (2.B3)

where dt represents the volume element within the surface and ds represents the sur-

face element.

The use ofG¼ u leads to contradictions because of the requirement that v¼ 0 and

@v/@n¼ 0 everywhere on the surface s. Instead, we define G by the conditions that

1

r
� @2rG

@r
þ k2G ¼ 0 within the volume; (2.B4a)
G ¼ 0 on s; (2.B4b)
G ! u as r ! 0; (2.B4c)� �

r

@G

@n
� ikG ! 0 as r ! 1: (2.B4d)

It is Eq. (2.B4d) that enables the boundary conditions on v without contradiction.
If we define the volume as the exterior exclusive of the volume surrounding P by K,
then the left-hand side of Eq. (2.B3) vanishes. Integration of the right-hand side over

K leads to �4pvp. Thus, Eq. (2.B3) reduces to

4pvp ¼
Z
s

@v

@n
G� v

@G

@n

� �
ds: (2.B5)

Applying the condition @v/@n ¼ 0 on s, Eq. (2.B5) becomes

4pvp ¼
Z
s
�v

@G

@n
ds: (2.B6)

The boundary conditions on v are

v ¼ 0 on s; (2.B7a)

0

n ¼ A exp ikr

r0
on s: (2.B7b)
2.10.5 Solution for a plane
This problem simplifies where the screen or surface is a plane. In that case, Green’s

function can be conveniently expressed by the method of images [to satisfy the

condition in Eq. (2.B4b) that G ¼ 0 on s]. Referring to Fig. 2.A.2, if the point P



FIGURE 2.A.2

Method of images applied to the generalizable diffraction problem.
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is at arbitrary coordinate (x,y,z), then the image point is at coordinates (x,y,�z). For
an arbitrary point Q with coordinates (x,�,z), we have

G ¼ eikr1

r1
� eikr2

r2
; (2.B8a)

where

r21 ¼ ðx� xÞ2 þ ð� � yÞ2 þ ðz� zÞ2 (2.B8b)

and

r22 ¼ ðx� xÞ2 þ ð� � yÞ2 þ ðxþ zÞ2: (2.B8c)

We next calculate

@G

@z
¼ d

dr1

eikr1

r1

� �
@r1
@z

� d

dr1

eikr1

r1

� �
@r2
@z

; (2.B9)

ikr
� �
@G

@n
¼ �@G

@z
� 2

@

@r

e

r
cosðn; rÞ: (2.B10)

We then have that

@

@r

�
eikr

r

�
¼ ikeikr

r
� 1

r2
eikr

¼ ikeikr

r

�
1� 1

ikr

�
:

(2.B11)
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In the limit of large r we have that kr ¼ 2pr/l � 1 and

@

@

eikr

r

� �
	 2pi

l
eikr

r
: (2.B12)

Putting Eq. (2.B12) into Eq. (2.B10), and that into Eq. (2.B6), we can solve for vp.

ilvp ¼
Z
s

eikr

r
cosðn; rÞvds: (2.B13)

2.10.6 Huygens’ principle
Equation (2.B13) is mathematically equivalent to Huygens’ principle. A light

wave falling on the aperture s propagates as if every element ds emitted a

spherical wave, the amplitude and phase of which are given by that of the incident

wave v.
If we assume point source illumination, then

n ¼ Aeikr
0

r0
; (2.B14)

in which case,

ilvp ¼ A

Z
eikðrþr0Þ cosðn; rÞds

rr 0
: (2.B15)
2.11 APPENDIX C
2.11.1 Diffraction by a circular aperture from which the airy
disk comes
Our next goal is to understand the origin of the Airy disk in the context of Kirchoff’s

formulation of Huygens’ principle. We again follow Sommerfeld in this discussion.

If we take as our starting point Eq. (2.C15) of Appendix B and further assume that

dimensions of the aperture are small compared to the distance r1 and r2, then the term
cos(n,r)/r1r2 varies little within the opening. Hence, that term may be taken outside

of the integral. Replacing r and r0 with R and R0, their respective values at the center
of the aperture, Eq. (2.C15) of Appendix B becomes

ilvp ¼ A

RR0 cosðn; rÞ
Z

eikðrþr0Þd�dx; (2.C1)

where � and x have the same meaning as in Appendix B. Now,

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xÞ2 þ ðy� nÞ2 þ z2:

q
(2.C2)
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Because R2 ¼ x2 þ y2 þ z2,

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � 2ðxxþ y�Þ þ x2 þ �2

q

ffi R� x

R
x� y

R
� þ x2 þ �2

2R
� ðxxþ y�Þ2

2R2

¼ R� ax� b� þ x2 þ �2 � ðaxþ b�Þ2
2R

;

(2.C3)

to second order in x and �.
Where a andb are respectively the directional cosines of the diffracted rayO! P0,

r0 ¼ R0 þ a0xþ b0� þ
x2 þ �2 � ða0xþ b0�

2Þ
2R0 : (2.C4)

It then follows that

eikðrþr0Þ ¼ eikðRþR0Þe�ikF; (2.C5)

where

F ¼ ða� a0Þxþ ðb� b0Þ� �
1

R
þ 1

R0

� �
x2 þ �2

2
þ ðaxþ b�Þ2

2R
þ ða0xþ b0�Þ2

2R0 :

(2.C6)

With these modifications, Eq. (2.C1) becomes

ilvp ¼ A

RR0 cosðn;RÞeikðRþR0Þ
Z

e�ikFdxd�: (2.C7)

Wehave, as they say, reached the proverbial end of the tunnel. For themicroscope, both

R andR0 are large in comparison to the dimensions of the aperture. This is the important

condition of Fraunhoffer diffraction. In this limit, F becomes linear in x and �:

F ffi ða� a0Þxþ ðb� b0Þ�: (2.C8)

We define

a ¼ a� a0; (2.C9a)

and

b ¼ b� b0; (2.C9b)

in which case,

F ffi axþ b�: (2.C10)

Considering the problem of a small circular aperture in the microscope, we

recognize that in the Fraunhoffer limit RR0 and cos(n, r) vary very little. Because

|exp ik(R þ R0)x| ¼ 1 and A is a constant, we may rewrite Eq. (2.C7) as
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np ¼ C

Z
eikFdxd�; (2.C11)

where C is a constant.

If we replace the coordinates (x, �) and the directional cosines (a, b) with polar

coordinates, that is

x ¼ r cos ’; (2.C12a)
� ¼ r sin ’; (2.C12b)
a ¼ s cos c; (2.C12c)
b ¼ s sin c; (2.C12d)

where r is the distance from the center of the opening, and s is the sine of the deflec-
tion angle between the diffracted ray and the perpendicular incident ray (the undif-

fracted ray), thus we may rewrite Eq. (2.C11) as

np ¼ Ck

Z d=2

0

rdr

Z p

�p
e�ikrs cosð’�cÞd’: (2.C13)

We recognize the ’ integral to be the cylindrical Bessel function:

J0ðrÞ ¼ 1

2p

Z þp

�p
eþir cos/da: (2.C14)

Thus,

up ¼ 2pCk
Z d=2

0

J0ðkrsÞrdr; (2.C15)

Z ksd=2
up ¼ 2pCk
k2s2 0

J0ðr0Þr0dr0; (2.C16)

where r ¼ ikrs. Then,

vp ¼ pCd
s

J1 ks
d

2

� �
: (2.C17)

What we actually observe is not vp but |vp|
2. If we also normalize this by dividing by

the intensity squared at s ¼ 0, we obtain

v2p
v2p0

¼ J21ðksðd=2ÞÞ
J21ð0Þ

: (2.C18)

This is the equation of the Airy disk observed in the microscope for a point source

of light.
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