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Abstract

The paper introduces a new approach to the estimation of the EEG–EMG coherence, which is used to examine the

functional connection between a human brain and muscles. A typical EEG–EMG coherence estimation, with a magnitude

squared coherence (MSC) barely exceeding 0.15, is enhanced so that MSC reaches or even goes above 0.5. The proposed

method is mathematically analyzed, and its properties are discussed. Additionally, the paper includes several EEG–EMG

coherence analysis results, with MSC exceeding 0.5.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The EEG–EMG coherence is usually used to
examine a functional connection between a human
brain and muscles [1–7]. It represents the relation-
ship of the electroencephalogram (EEG), the record
of brain activity and the electromyogram (EMG),
the record of activity of a contracted muscle. The
inspection of the relationship between these two
signals provides information about the mechanism
of the cortico-muscular interconnection. It helps to
understand how a brain controls muscles [8,9], and
also reflects movement disorders, e.g. Parkinson
disease, cortical myoclonus or upper-limb dystonia
(for more details refer to Appendix C).

Typically, magnitude squared coherence (MSC)
of EEG and EMG is very low, normally around 0.1,
e front matter r 2005 Elsevier B.V. All rights reserved

pro.2005.09.011

ing author. Tel.: +420 224 352 158.

sses: bortelr@feld.cvut.cz (R. Bortel),

t.cz (P. Sovka).
barely exceeding 0.15, and not being distinguishable
at all for some percentage of population. However,
the recent research has shown that, with a proper
pre-processing of an EEG signal, the EEG–EMG
coherence can be enhanced so that its maximum
MSC value exceeds 0.5 or at least is more
distinguishable in the less favorable cases.

Typical EEG and EMG records are shown in
Fig. 1. An average EEG record typically suffers
from presence of a great amount of noise, which
originates in brain functions, not related to the
control process of the monitored muscle. Therefore,
it is almost impossible to directly observe any
relationship between EEG waveforms and spiky
bursts typically appearing in the associated EMG.
Consequently, the EEG–EMG MSC, example of
which is shown in Fig. 2, is low.

Nevertheless, it was shown [1–7], that even
though the EEG–EMG MSC is very small, it does
represent a recognizable functional connection
between a brain and muscular activity. Therefore,
.
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Fig. 2. Example of EEG and EMGMSC. As usual, its maximum

does not exceed value of 0.1.
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Fig. 1. Typical EEG and EMG waveforms.
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one could presume that in the EEG record there is a
waveform, which corresponds to the actual drive of
the muscle, and this waveform is strongly related to
the EMG signal (i.e. the MSC of this waveform and
the EMG signal is high). Hence, if this waveform
was successfully extracted from EEG, its coherence
with the corresponding EMG signal would increase
significantly.

This paper proposes a method which purges an
EEG signal of the waveforms uncorrelated to the
muscular EMG activity, and keeps only the signal
related to the activity in the muscle. Thus, this
method increases the EEG–EMG MSC to the levels
of 0.5 and higher, providing more sensitive tool for
the EEG–EMG coherence analysis.

2. Currently used method of EEG–EMG coherence

estimation

Currently, the EEG–EMG coherence is estimated
in the following manner.
First, the EEG signal, measured by several
electrodes on the head of an examined subject, is
spatially filtered, so that the signal from the
electrode sensing activity in the sensimotor cortex
is purged of any activity coming from completely
different parts of the brain.

Additionally, the EMG signal, measured by two
electrodes placed over a muscle performing a
constant contraction, undergoes a simple pre-
processing of rectification.

Next, the coherence function is computed. EEG,
denoted as u½n�, and the rectified EMG, denoted as
v½n�, are segmented into L segments, and then the
coherence is estimated (e.g. see [3]) according to

bguvðOÞ ¼
ð1=LÞ

PL
l¼1 U�l ðOÞVlðOÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1=LÞ
PL

l¼1jUlðOÞj2 � ð1=LÞ
PL

l¼1jV lðOÞj2
q ,

(1)

where bguvðOÞ is the estimate of the coherence
function of the signals (jbguvðOÞj

2 is magnitude
squared coherence—MSC), u½n� and v½n�, UlðOÞ is
the spectrum of u½n� in the lth segment, V lðOÞ is the
spectrum of v½n� in the lth segment, and the asterisk
denotes the complex conjugation.

Last, the resulting MSC needs to be decided
whether it is significant enough to indicate any
functional connection between the sensimotor
cortex and the monitored muscle. Several ap-
proaches to determine MSC significance were used
so far. In this paper, a method adopted from [6] will
be used. This method is based on a comparison of
the resulting MSC with an MSC computed from the
EEG and EMG signals time shifted so that any true
coherence is gone. The MSC of the time shifted
signals consists of a random coherence only; there-
fore, it is used to compute a floor, exceeding of
which makes the original MSC significant. This
floor, termed as the confidence limit, is computed as
a value, under which lies 95% of the random MSC.
If the original MSC clearly exceeds this confidence
limit, it is considered to be significant, and proves
functional connection between the EEG and EMG
activity.

The coherence computed by the described
approach, however, suffers from a great amount
of noise, which is present in the EEG signal due to
our inability to filter out all of the brain signals not
related to the activity in the monitored muscle (the
spatial filtering of the signals from EEG electrodes
is far too insufficient to extract just one signal from
a brain). Consequently, the coherence mostly does



ARTICLE IN PRESS

E
M

G

R. Bortel, P. Sovka / Signal Processing 86 (2006) 1737–1751 1739
not exceed the value of 0.15, and sometimes no
significant coherence is found.

Therefore, an effort was spent to find a way to
suppress the parasitic signals in EEG which are not
related to the EMG activity. One way how to purge
the EEG signal is proposed in Section 3.
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time [s]

Fig. 3. Detection of bursts in EMG signal. The EMG bursts are

indicated with arrows.
3. Proposed methods

The proposed method of a EEG–EMG coherence
computation uses the same computational steps as
the previously described method; additionally, it
performs some more advanced EEG pre-processing,
which purges EEG signal of the waveforms not
related to the EMG activity.
3.1. Pre-processing

The idea of this pre-processing is to search for a
signal which repeatedly occurs in the neighborhood
of the spiky bursts typically occurring in EMG. We
suppose that if there is a signal driving EMG bursts
present in EEG, then this signal should approxi-
mately repeat itself in the neighborhood of the
EMG bursts. On the other hand, if instead of the
driving signal only noise is present, this noise is
uncorrelated to the EMG activity, and so in the
bursts’ neighborhood is always different. Therefore,
the pre-processing will try to find the signal which
repeats itself around the EMG bursts, and will
suppress all the noises which do not seem to be
related to the EMG bursts.

This can be done as follows.
First, the positions of the EMG bursts needs

to be found. It is possible to find the bursts in
many ways; however, it will be shown later that
this step is not really necessary, and is included only
for explanatory reasons, so at this point we will
satisfy with an assumption that the EMG bursts
have been found somehow. An illustration of what
the found EMG bursts look like is in Fig. 3, where
arrows indicate positions of recognized EMG
bursts.

Next, the positions of the found EMG bursts are
recorded into a new signal ev½n�, which has the value
of one for index n, where a burst in the EMG signal
has occurred, and zero otherwis4

ev½n� ¼ 1 if burst has occured at position n;

0 otherwise:

�
(2)
Further, again just for explanatory reasons, it will
be supposed that the only useful information in
EMG are the found bursts. Therefore, at least for
now, the original rectified EMG signal v½n� will be
replaced with the newly constructed ev½n�, in which
the bursts are contained as unity pulses.

Next, ev½n� will be used to extract those EEG
samples which are supposed to approximately
repeat themselves in case a noise free driving signal
is present in EEG. These repeating EEG samples
should have a constant relative position towards the
bursts in EMG (or in other words, they precede or
lag behind the EMG bursts by a constant number of
sample indexes), and so they can be extracted from
EEG by multiplying it with a time shifted ev½n� (limits
of the time shift �K ;K will be determined later)eu½n; k� ¼ u½n� � ev½n� k�; k ¼ �K ; . . . ;K . (3)

The resulting system of sequences eu½n; k� contains
the original EEG data only on those positions,
where ev½n� k� is unity—that is on the positions
which precede or lag the detected EMG bursts by k

samples. The other positions will be zero. Thuseu½n; k� for k constant will contain exactly those
samples which should repeat themselves in case
EEG contains only a noise free driving signal.

With random noise present, however, the ex-
tracted samples will be scattered. Therefore, to find
the repeating contributions of driving signal, the
extracted values eu½n; k�, k constant, will be searched
for any average trend. This will be done through
computing a moving average of eu½n; k� according to

feu½n; k�gav ¼ XM
m¼�M

eu½n�m; k�b½m�

¼ eu½n; k� � b½n�; n ¼ 1; . . . ;N, ð4Þ

where feu½n; k�gav denotes the averaged signal, b½n� is
a symmetric window of 2M þ 1 weights with the
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center of symmetry in n ¼ 0,1 N is the length of u½n�,
and * stands for a convolution. Thus, this procedure
computes the average values from the samples
selected by the window b½n� sliding along eu½n; k�,
approximating the driving signal of the EMG
bursts.

The result of the moving average (4) is affected by
the non-zero values of eu½n; k� only; the values zeroed
by (3) have no effect on the result. However, after
applying (4), all the samples in feu½n; k�gav will
generally be non-zero. This is rather inconvenient
for the further aim to reassemble the system of se-
quences feu½n; k�gav; k ¼ �K ; . . . ;K into a one re-
sulting sequence. Therefore, in feu½n; k�gav the
non-zero values will be kept only on the positions
which were non-zero originally in eu½n; k�. This
means to apply the extraction process (3) againgfeu½n; k�gav ¼ feu½n; k�gav � ev½n� k�; k ¼ �K ; . . . ;K .

(5)

Now the last step will be to finally reassemble the

sequences gfeu½n; k�gav; k ¼ �K ; . . . ;K , which at this
point contain the averaged values extracted from
EEG. This can be done by just adding these
sequences together, while properly weighing them
by some coefficients ak (the coefficients ak can
simply be ones, but the further examination of the
resulting formula will show a better choice)

u0½n� ¼
XK

k¼�K

ak
gfeu½n; k�gav. (6)

To obtain the final result (3)–(5) are substituted into
(6), yielding

u0½n� ¼
XK

k¼�K

akððu½n�ev½n� k�Þ � b½n�Þev½n� k�. (7)

Formula (7) is finally usable for the pre-processing
of the EEG signal. If a coherence of signals u0½n� andev½n� was computed, it might provide some nice
results of coherence, with MSC exceeding 0.5.
However, since the following examination of
formula (7) needs no assumption on the signalev½n�, it appears that ev½n� can be any signal and not
only the one with unity pulses at the positions of the
EMG bursts. Therefore, it is possible to conveni-
ently replace ev½n� with the original EMG signal v½n�,
which according to experiments seems to provide
the best results. Hence, formula (7) can be
1This setup ensures that no time/phase shifts are introduced

into the resulting signal.
rewritten as

u0½n� ¼
XK

k¼�K

akððu½n� � v½n� k�Þ � b½n�Þv½n� k�. (8)

Furthermore, the mentioned steps of finding the
bursts in EMG and replacing of v½n� with ev½n� are no
longer necessary.

3.2. Coherence analysis of pre-processed signals

In this section the coherence of the pre-processed
EEG signal u0½n� and the rectified EMG signal v½n�

will be examined. To do this u0½n� and v½n� first need
to be segmented into u0l ½n� and vl ½n�, where l is an
index of a segment. Then, the Fourier transforms of
the signals in each segment needs to be found.

3.2.1. Fourier transform of pre-processed signals

The Fourier transform of vl ½n� is straightforward

VlðOÞ ¼Ffvl ½n�g, (9)

where Ff:g denotes the Fourier transform.
The Fourier transform of u0l ½n� can be found

transforming the pre-processing formula (8), but
before doing so, it is convenient to rearrange (8)
slightly.

First, the expression ðu½n� � v½n� k�Þ � b½n� in (8)
actually represents the estimate of the cross-
correlation function of v½n� and u½n� computed from
samples n�M ; . . . ; nþM [10] (the span of these
limits is given by the length 2M þ 1 of the window
formed by the weights b½n�)bRvun½k� ¼ bRuvn½�k� ¼ ðu½n� � v½n� k�Þ � b½n�

¼
XnþM

m¼n�M

u½m�v½m� k� b½n�m�,

n ¼M þ K ; . . . ;N �M � K , ð10Þ

where bRvun½k� is the cross-correlation estimate, and
N is the length of the sequences u½n� and v½n�.

For further analysis it is important to notice, that
the precision of the estimate bRvun½k�, for jkj small,
improves with an increasing number of samples this
estimate is computed from [11]—that is, it improves
with a growing length 2M þ 1 of the window b½n�.

Additionally, since the final result will contain the
Fourier transform of bRuvn½k�, we will investigate the
effect of window b½n� in the spectral domain. The
fourier transform of (10) is

FfbRuvn½k�g ¼ V�ðOÞ � ðUðOÞ � ðB�ðOÞe�jnOÞÞ, (11)
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where UðOÞ ¼Ffu½n�g, V ðOÞ ¼Ffv½n�g and
BðOÞ ¼Ffb½n�g. It seems that window b½n� can
cause some spectral leakage as its Fourier transform
convolves with UðOÞ. To minimize this, we suggest
to use a low leakage window, e.g. the Hamming
window (Appendix E shows that choosing a
different low leakage window does not have any
significant effect on the resulting coherence).

Now, substitution of (10) into (8) provides

u0½n� ¼
XK

k¼�K

ak � bRvun½k� � v½n� k�. (12)

Next, to simplify the Fourier transform of (12), the
cross-correlation estimates bRvun½k� for all n within
one segment l will be approximated by just one cross
correlation estimate bRvul ½k�. This is possible because
of two reasons. First, within short segments, the
EEG signal can be considered stationary, and so the
true cross-correlation should be constant there,
which suggests an approximately constant cross-
correlation estimate bRvun½k�. Second, for good
results (according to our experimental assessment)
it is necessary to compute the cross-correlation
estimate bRvun½k� from more samples than 15 times
the number of samples in a segment. Thus, with n

constrained within one segment, n changes only a
little compared to the length 2M þ 1 of the intervals
n�M; . . . ; nþM, which bRvun½k� are computed
from. Hence, with n within one segment, the
intervals n�M ; . . . ; nþM contains a lot of same
samples, and bRvun½k� are dependent and similar.
Therefore, in each segment, bRvun½k� will be replaced
by just one estimate bRvul ½k� given bybRvul ½k� ¼ bRvun½k�

where n is an index amidst the segment l. ð13Þ

Using (13), (12) changes into approximation of u0½n�

u0l ½n�¼
: XK

k¼�K

ak � bRvul ½k� � v½n� k�

for n within the segment l. ð14Þ

Applying the Fourier transform yields

U 0lðOÞ¼
: XK

k¼�K

ak � bRvul ½k� � VlðOÞ � e�jOk. (15)

Next, since e�jOk is the Fourier transform core, and
ak � bRvul ½k� is the weighted cross-correlation function
of ul ½k� and vl ½k�, it is possible to transform (15) to

U 0lðOÞ¼
: bSvulðOÞ � V lðOÞ, (16)
where bSvulðOÞ is a smoothed estimate of the cross-
spectral density of ul ½k� and vl ½k�bSvulðOÞ ¼Ffak � bRvul ½k�g. (17)

Even though (16) already is a Fourier transform of
u0l ½k�, to examine EEG–EMG correlation more
closely, it is suitable to rearrange (16) so that the
properties of the transfer path between EEG and
EMG will be clearly shown. This can be accom-
plished [12] by expressing the cross-spectrum
estimate bSvuðOÞ in terms of the auto-spectral density
estimate, given as

SvðOÞ ¼ E½jVl j
2ðOÞ�, (18)

and the complex transfer function bHlðOÞ which
estimates the transfer path from vl ½k� to ul ½k�bSvulðOÞ ¼ bHlðOÞ � SvðOÞ. (19)

Substituting (19) into (16) yields the sought Fourier
transform of u0l ½k� suitable for further analysis

U 0lðOÞ¼
:

SvðOÞ � bHlðOÞ � V lðOÞ. (20)

Additionally, at this point it is possible to decide the
values of the coefficients ak. Since the window ak

multiplies with bRuvl ½k� in the time domain, in the
spectral domain the window ak will cause spectral
smearing and spectral leakage. Therefore, we
suggest using a low leakage window with acceptable
spectral smearing, e.g. Hamming window.
3.2.2. Interpretation of pre-processing

With the Fourier transform of u0l ½k� found, it is
possible to interpret the pre-processing results.
According to (20) rearranged into

U 0lðOÞ �
1bHlðOÞ
¼
:

VlðOÞ � SvðOÞ, (21)

u0l ½n� is the signal which has created vl ½n� linearly
transformed by SvðOÞ through a system with the
transfer function 1= bHlðOÞ. Because bHlðOÞ estimates
the transfer path from the EMG signal vl ½n� to the
EEG signal ul ½n� in the segment l, the inverse
transfer function 1= bHlðOÞ in a certain way estimates
the transfer path from EEG to EMG. Therefore,
u0l ½k� can be interpreted as an approximation of the
sought driving signal of the bursts in EMG
(additionally, u0l ½k� is affected by the linear trans-
formation by SvðOÞ, which, however, owing to
its linearity, has no influence on the resulting
coherence).
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Also it could be noted that the way of estimation
of the transfer function bHðOÞ and expressions (20)
and (21) resemble the Wiener filtration [12].

3.2.3. Noise suppression of pre-processing

Expression (20) can further explain how the
proposed pre-processing suppresses noise in the
EEG signal u½n�. If u½n� consists of a useful signal
uS½n� and a noise uN½n�, which is not correlated with
uS½n�

u½n� ¼ uS½n� þ uN½n�, (22)

then substituting (22) into the pre-processing for-
mula (8) yields

u0½n� ¼
XK

k¼�K

akððuS½n� � v½n� k�Þ � b½n�Þv½n� k�

þ
XK

k¼�K

akððuN½n� � v½n� k�Þ � b½n�Þv½n� k�.

ð23Þ

Which, applying the Fourier transform (20), pro-
vides

U 0lðOÞ¼
:

SvðOÞ � bHSlðOÞ � V lðOÞ

þ SvðOÞ � bHNlðOÞ � V lðOÞ, ð24Þ

where bHSlðOÞ is an estimate of the transfer function
between vl ½n�, and uSl ½n� and bHNlðOÞ is an estimate
of the transfer function between vl ½n� and uNl ½n�. The
second estimate bHNlðOÞ, however, will be close to
zero, because the noise uN½n� is not correlated with
v½n�. Therefore, U 0lðOÞ and u0½n� will approach to

U 0lðOÞ ! SvðOÞ � bHSlðOÞ � V lðOÞ, (25)

u0½n� !
XK

k¼�K

akððuS½n� � v½n� k�Þ � b½n�Þv½n� k�.

(26)

So the pre-processed signal u0½n� will not be affected
by the noise in the EEG signal u½n�. This, of course,
has a beneficial influence on the resulting coherence,
as will be shown in the next section.

3.2.4. Coherence of pre-processed signals

With the Fourier transform of u0l ½n� and vl ½n�

found, it is possible to examine their coherence
function gu0vðOÞ, defined as

gu0vðOÞ ¼
Su0vðOÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Su0 ðOÞ � SvðOÞ
p , (27)
where Su0vðOÞ is the cross-spectral density of u0½n�

and v½n�, S0uðOÞ is the auto-spectral density of u0½n�,
and SvðOÞ is the auto-spectral density of v½n�.

Assuming that u½n� and v½n� are stationary and
ergodic, the coherence function (27) can by esti-
mated as [13,14]

bgu0vðOÞ ¼
ð1=LÞ

PL
l¼1U

0
l
�
ðOÞVlðOÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1=LÞ
PL

l¼1jU
0
lðOÞj

2 � ð1=LÞ
PL

l¼1jVlðOÞj2
q .

(28)

Substituting (20) gives a coherence function esti-
matebgu0vðOÞ¼

:

ð1=LÞ
PL

l¼1SvðOÞ � bH�l ðOÞ � V�l ðOÞ � VlðOÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=LÞ

PL
l¼1jSvðOÞ � bHlðOÞ � V lðOÞj2 � ð1=LÞ

PL
l¼1jV lðOÞj2

q .

ð29Þ

Owing to the ergodicity of u½n� and v½n�, the sums in
(29) can be asymptotically (i.e. for L large)
estimated with the expected values of their argu-
ments, and so the entire expression (29) can be
asymptotically estimated as

bgu0vðOÞ !
S1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 � S3

p , (30)

where S1, S2 and S3 are the expected values of the
arguments of the sums in (29)

S1 ¼ E½SvðOÞ � bH�l ðOÞ � V�l ðOÞ � VlðOÞ�

¼ SvðOÞ � E½ bH�l ðOÞ � jV lðOÞj2�, ð31Þ

S2 ¼ E½jSvðOÞ � bHlðOÞ � VlðOÞj2�

¼ S2
vðOÞ � E½j bHlðOÞj2 � jVlðOÞj2�, ð32Þ

S3 ¼ E½jV lðOÞj2� ¼ SvðOÞ. (33)

First, let us investigate the case when u½n� and v½n�

are independent. Expression (31), as shown in
Appendix A, can be conveniently expressed in terms
of u½n� and v½n� as

S1 ¼ SvðOÞ � E½ bH�l ðOÞ � jV lðOÞj2�

¼ A�ðOÞ �
XnþM

m¼n�M

ðb½n�m� � E½u½m�

�Ffv½mþ k�g � jV lðOÞj2�Þ, ð34Þ

where AðOÞ is the Fourier transform of the sequence
ak. Owing to the independence of u½n� and v½n�, the
expected value operator in (34) can be divided into
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two parts

A�ðOÞ �
XnþM

m¼n�M

ðb½n�m� � E½u½m��

� E½Ffv½mþ k�g � jV lðOÞj2�Þ. ð35Þ

And because the average value of u½n� is zero (if it is
not, any DC component should be cancelled), its
ergodicity suggests E½u½n�� ¼ 0, and so the whole
expression (35) is zero. Therefore, the numerator of
(30) is zero as well.

Moreover, since expressions (32) and (33) are
generally non-zero (except of the degenerated case
of v½n� ¼ 0) the denominator of (30) is non-zero,
too. Thus the entire expression (30) is zero.

Therefore, if v½n� and u½n� are independent, and
the number of segments L is large enough to
estimate the sums in (29) by the mean values of
their arguments, bgu0vðOÞ goes to zero.

Now, let us investigate the case when u½n� and v½n�

are somehow dependent. To express the coherence
function estimate (30) in an analyzable way, it is
convenient to express the spectral characteristic
estimates in terms of their expected values and the
expected value estimate errors, some of which will
lessen and vanish as the estimates of the expected
values get more precise. Specifically, it is suitable to
express bSuvlðOÞ and jV lðOÞj2 like thisbSuvlðOÞ ¼ E½bSuvðOÞ� þ eSuvl

ðOÞ

¼ SuvðOÞ þ eSuvlðOÞ, ð36Þ

jVlðOÞj2 ¼ E½jV lðOÞj2� þ eVlðOÞ

¼ SvðOÞ þ eVlðOÞ, ð37Þ

where SuvðOÞ and SvðOÞ are the expected values ofbSuvðOÞ and jV lðOÞj2, respectively, and eSuvl
ðOÞ and

eVlðOÞ are errors of bSuvðOÞ and jVlðOÞj2 used as
estimates of their expected values. Also it is

convenient to denote the expected value of bHlðOÞ,

HðOÞ ¼ E½ bHlðOÞ�. (38)

In these terms, as shown in Appendix B, the
expressions for S1 (31) and S2 (32) can be rewritten
into new forms (B.2) and (B.5), substitution of
which into the coherence estimate (30) yields

bgu0vðOÞ !
S1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 � S3

p

¼
S2

vðOÞ �H
�ðOÞ þ E½eSuvl

ðOÞ � eVlðOÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 � S3

p ,

ð39Þ
where the expression in the denominator is

S2 � S3 ¼ ðS
3
vðOÞ � jHðOÞj

2

þ 2RfSuvðOÞE½e�Suvl
ðOÞ � eVlðOÞ�g

þ SvðOÞE½jeSuvl
ðOÞj2�

þ E½eVlðOÞ � jeSuvl
ðOÞj2�Þ � SvðOÞ. ð40Þ

When v½n� and u½n� are not independent, with a

growing precision of the estimate bSuvlðOÞ, its
expected value estimate error eSuvl

ðOÞ is decreasing,
and consequently all the mean values in the (39)
which contain eSuvl

ðOÞ are getting smaller and

negligible. Therefore, as precision of bSuvlðOÞ in-

creases, the coherence function estimate bgu0v ap-
proaches to

bgu0v !
S2

vðOÞ �H
�ðOÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S4
vðOÞjHðOÞj

2
q

¼
H�ðOÞ
jHðOÞj

¼ 1 � e�jfHðOÞ . ð41Þ

The precision of the estimate bSuvlðOÞ improves with

the precision of bRvul ½k�, which increases with a
growing length 2M þ 1 of the window b½n�.

In conclusion, if the number of segments L and
the length 2M þ 1 of the window b½n� is sufficiently
large, bgu0vðOÞ approaches to the following:bgu0vðOÞ ! 0

for v½n�; u½n� independent

(i.e. no EEG2EMG functional connection),

ð42Þ

bgu0vðOÞ ! 1 � e�jfH ðOÞ for v½n�; u½n� somehow correlated

(i.e. the functional connection exists). ð43Þ

While (42) is a completely normal behavior of a
coherence function of any two independent signals,
(43) is an enhanced behavior, arising due to the pre-
processing of the signals.

3.3. Proposed method summary

The proposed method should be used as follows:
first, recorded EEG data are spatially filtered, while
recorded EMG is rectified. Next, the EEG signal
associated with the electrode placed over the
sensimotor cortex contralateral to the contracted
muscle is pre-processed with (8). Then, using the
pre-processed EEG and the rectified EMG, the
coherence is computed with (28). Last, to compute a
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confidence limit, the coherence of the time shifted
EEG and EMG signals is computed in the same
way,2 estimating the confidence limit as a value,
under which lies 95% of the coherence of the time
shifted signals.3

The parameters of the pre-processing should be
chosen according to the following guidelines.

First, the longer the window b½n�, the more
distinct is the coherence at the frequencies, where
EEG and EMG are dependent. The length of b½n�,
however, should be much less than the length of the
EEG record. Making b½n� too long, would decrease
the number of degrees of freedom of the coherence
estimate, increasing its bias error. During practical
tests on data sequences 2.5min long (�77 � 103

samples; sampled at 512Hz), making b½n� the
Hamming window with the length of 4000–5000
samples (� 7.8 s or � 9.8 s, respectively) proved to
work fine.

Second, the sequence ak should be the Hamming
window long enough to provide a sufficient
frequency resolution when used for weighing of a
correlation function prior to its Fourier transform.
For example, it should be at least 0.5 s long to
provide the frequency resolution of 2Hz.

4. Results

The proposed method was tested on a number of
EEG and EMG data records, measured during a
constant isometric contraction of an index finger (12
individuals were holding three different weights).
Each contraction was 2.5min. long, sampled at
512Hz (77 � 103 samples per measurement).

EEG was recorded from 82 scalp locations
covering frontal, central, parietal and temporal
scalp regions. The electrodes were positioned in a
rectangular grid with spacing, approximately,
2.5 cm. Recorded data were spatially filtered [17]
to eliminate current smearing caused by conducting
layers of a head.
2That is, the spatially filtered EEG and the rectified EMG is

time shifted, pre-processed, and then the coherence is computed.
3The time shift should abolish any true coherence and keep

only a random one. Therefore, we suggest it to be more than 0.5 s

plus the length of a signal segment used in the MSC computation.

The value of 0.5 s is based on the results published in [15], where

the cortico-muscular cross-correlations were significant only if

the mutual time shift was less than 200ms (we confirmed this

result by computing cross-correlations of our EEG–EMG

records). Our requirement on the proposed timeshift is actually

stronger than in the previous works [16,6], where only a timeshift

of the segment length was used.
For the EEG–EMG coherence computation, we
used EEG records from the electrodes positioned
over a primary sensimotor area contralateral to the
contracted muscle (the primary sensimotor area is
involved in movement control, hence its EEG
record is expected to be correlated with the EMG
record of the contracted muscle). When more than
one electrode demonstrated a significant EEG–
EMG MSC, the electrode with the strongest MSC
was chosen.

EMG was recorded using bipolar electrodes
positioned over muscle extensor indicis longus,
which is in charge extension of an index finger.

Parameters of the pre-processing were: b½n�

was the Hamming window of the length 2M þ 1 ¼
5001 ð�9:8 sÞ, and ak was the Hamming window
with the length 2K þ 1 ¼ 201 ð�0:4 sÞ.

For the coherence computation, the signals were
segmented into non-overlapping segments of 256
samples ð�0:5 sÞ.

The confidence limit was estimated from the MSC
of EEG and EMG signals time shifted by 1000
samples ð�1:95 sÞ.

Some of the resulting MSCs are shown in Fig. 4.
Each row in Fig. 4 shows results of one set of the
EEG–EMG data. The first in each row there is the
enhanced coherence function (its magnitude
squared value), computed from the EEG and
EMG signals pre-processed as proposed. In the
middle column there is the original MSC computed
in a common way without the proposed pre-
processing (limits of the y-axis here are the same
as for the enhanced coherence to show how small
the original EEG–EMG MSC actually is). In the
most right column, allowing a better comparison
with the enhanced coherence, the original MSC is
scaled, so that the confidence limit, indicated as a
horizontal line, is at the same height as the
confidence limit of the enhanced MSC.

From the results in Fig. 4 it is clear that the
proposed pre-processing indeed amplified the MSC
considerably. While the original MSCs in the rows
(a)–(c) have their maximums at 0:055; :065 and
0:035, the enhanced MSCs have their maximums at
0:7; 0:69 and 0:52, respectively.

Moreover, in the most cases the enhanced MSCs
appear to be more distinct. Comparing left and right
column of rows (a)–(d), one can see that the peaks
in the enhanced MSCs are slightly more exceeding
the confidence limit than the original MSC. In the
row (d), where this is the most noticeable, the
original MSC is exceeding the confidence limit
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Fig. 4. Examples of EEG–EMG MSCs.
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weakly; nevertheless, the enhanced MSC express a
more distant peak reaching 0:4.

However, there are some cases where the en-
hanced MSC does not appear to be more distinct in
the mentioned manner. Mostly, these are the cases
where the original MSC is, compared to average
values in [1,2,4–7], really high (over 0:1), so the
further gain in the enhanced MSC is constrained by
its upper limit (cannot go over 1). An example of
this case is shown in row (e).

Lastly, we present MSCs of uncorrelated EEG
and EMG signals. Fig. 5(a) shows an EEG–EMG
MSC, where the EEG was recorded over the
occipital area (back of the head; a center of vision).
Since this area is not involved in muscle control, its
EEG record is not related to the EMG of the
contracted muscle. In agreement, both original and
enhanced MSC confirm that the EEG and EMG
records are uncorrelated. Next, in Fig. 5(b), there is
an MSC between EEG and EMG signals recorded
while the monitored muscle was relaxed (actually, as
long as a muscle is not contracted, it does not
generate any measurable EMG signal, and its EMG
record is essentially composed of noise). In Fig. 5(b)
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Fig. 5. Examples of EEG–EMG MSCs of uncorrelated EEG and EMG signals.
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both enhanced and original MSC show that the
EEG and EMG signals, recorded while the mon-
itored muscle was relaxed, are uncorrelated.4

Overall, these examples confirm that the en-
hanced coherence reveals EEG–EMG correlations
correctly and in agreement with the physiological
expectations.
5. Summary

The paper proposed a new method of the
EEG–EMG coherence computation. The performed
mathematical analysis showed that if there is any
stationary functional connection between EEG and
EMG activity, then due to the proposed EEG pre-
processing the EEG–EMG MSC can approach
unity instead of being below 0.15 as usual. The
illustrated practical results showed the EEG–EMG
MSC being enhanced from values below 0.1 to
values over 0.5. Moreover, an observation was that
the enhanced MSC appears to be more distinct than
the original one. Overall, the proposed computa-
tional method provided a significant boost of the
MSC between EEG and EMG signals.5
4It is possible to observe an occasional exceeding of a

confidence limit by the MSCs of uncorrelated signals. This,

however, is perfectly normal. Since we use a 95% confidence

limit, the MSC of uncorrelated signals will not pass the

confidence limit with 95% probability. Thus, on average, 5% of

the MSC estimates will exceed the confidence limit (slightly).
5All the statements, results and conclusions in this paper hold

true (and were tested) even for the case when the electroence-

phalograph record EEG is replaced by the magnetoencephalo-

graph record MEG.
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Appendix A. Expressing S1 in terms of u½n� and v½n�

To express S1 (31) in terms u½n� and v½n�, we first
substitute (31) with (19)

S1 ¼ SvðOÞ � E½ bH�l ðOÞ � jV lðOÞj2�

¼ SvðOÞ � E
bS�vulðOÞ
SvðOÞ

� jVlðOÞj2
" #

¼ E½bS�vulðOÞ � jV lðOÞj2�. ðA:1Þ

Next a substitution of (17), (13) and (10) into the
expression (A.1) yields

E½bS�vulðOÞ � jV lðOÞj2�

¼
#

ð17Þ

E½Ffa�k bRvul ½�k�g � jV lðOÞj2�

¼ E½A�ðOÞ �Ff bRvul ½�k�g � jVlðOÞj2� ¼
#

ð13Þ

¼ E½A�ðOÞ �Ff bRvun½�k�g � jVlðOÞj2� ¼
#

ð10Þ
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¼ E A�ðOÞ �F
XnþM

m¼n�M

u½m� � v½mþ k�

("

� b½n�m�

)
� jV lðOÞj2

#

¼ E A�ðOÞ �
XnþM

m¼n�M

ðu½m� �Ffv½mþ k�g

"

� b½n�m� � jV lðOÞj2Þ

#

¼ A�ðOÞ �
XnþM

m¼n�M

ðb½n�m� � E½u½m�

�Ffv½mþ k�g � jV lðOÞj2�Þ. ðA:2Þ

This expression can finally be used for further
analysis of the coherence function estimate.
Appendix B. Expressing S1 and S2 in terms of

Suvl ðOÞ, SvðOÞ, HðOÞ, eSuvl
ðOÞ and eVl ðOÞ

To express S1 (31) in terms of these ex-
pected values and errors, bH�l ðOÞ first needs to be
expressed using (19), (36), (38) and relationbS�vulðOÞ ¼ bSuvlðOÞ

bH�l ðOÞ ¼ bSuvlðOÞ
SvðOÞ

¼
E½bSuvlðOÞ� þ eSuvl

ðOÞ
SvðOÞ

¼
E½bSuvðOÞ�

SvðOÞ
þ

eSuvl
ðOÞ

SvðOÞ

¼ H�ðOÞ þ
eSuvl
ðOÞ

SvðOÞ
. ðB:1Þ

Next, substituting (B.1) and (37) into (31),
and taking into the account that due to the
ergodicity of v½n� and u½n� the expected values of
the errors eSuvl

ðOÞ and eVlðOÞ are zero, yields the

expression for S1 suitable for further coherence
analysis

S1 ¼ SvðOÞ � E H�ðOÞ þ
eSuvl
ðOÞ

SvðOÞ

� ��
� ðSvðOÞ þ eVlðOÞÞ

�
¼ S2

vðOÞ �H
�ðOÞ þ E½eSuvl

ðOÞ � eVlðOÞ�. ðB:2Þ

Now, the expression for S2 (32) will be modi-

fied more conveniently. First, j bHlðOÞj2 will be
substituted with (19), (36) and (38)

j bHlðOÞj2 ¼
jbSuvlðOÞj2

S2
vðOÞ

¼
ðSuvlðOÞ þ eSuvl

ðOÞÞ � ðS�uvlðOÞ þ e�Suvl
ðOÞÞ

S2
vðOÞ

¼
jSuvðOÞj2

S2
vðOÞ

þ
SuvðOÞ � e�Suvl

ðOÞ

S2
vðOÞ

þ
S�uvðOÞ � eSuvl

ðOÞ

S2
vðOÞ

þ
jeSuvl
ðOÞj2

S2
vðOÞ

¼ jHðOÞj2 þ 2R
SuvðOÞ � e�Suvl

ðOÞ

S2
vðOÞ

( )

þ
jeSuvl
ðOÞj2

S2
vðOÞ

. ðB:3Þ

Next, substitution of (B.3) and (37) into (32) yields

S2 ¼ S2
vðOÞ � E jHðOÞj2 þ 2R

SuvlðOÞ � e�Suvl
ðOÞ

S2
vðOÞ

( ) "

þ
jeSuvl
ðOÞj2

S2
vðOÞ

!
� ðSvðOÞ þ eVlðOÞÞ

#
, ðB:4Þ

what, taking advantage of the fact that the expected
values of errors eSuvl

ðOÞ and eVlðOÞ are zero, can be

simplified into the expression for S2 suitable for
further coherence analysis

S2 ¼ S3
vðOÞ � jHðOÞj

2

ðB:5Þ

þ 2RfSuvðOÞE½e�Suvl
ðOÞ � eVlðOÞ�g

þ SvðOÞE½jeSuvl
ðOÞj2� þ E½eVlðOÞ � jeSuvl

ðOÞj2�.

ðB:6Þ
Appendix C. EEG and EMG signals

C.1. Electroencephalogram—EEG

A surface EEG is a record of complex activity of
a huge number of neurons communicating with
each other.

On the cellular level, neurons receive signals
through synaptic connections. Excitatory synaptic
connections increase their internal potential and
inhibitory synaptic connections decrease it. When
the internal potential passes a certain threshold a
neuron generates (fires) a spiky wave, termed as an
action potential. As a result, the internal potential is
decreased, and the entire process can be repeated.
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Groups of neurons synchronize their activity into
an oscillatory pattern. Even though the entire
mechanism of these oscillations still remains a bit
mysterious, there are some partial explanations. For
example, one can imagine the EEG oscillations as
an interaction between excitatory and inhibitory
neuron pools [18]. The excitatory neuron pools
stimulate the inhibitory neurons, which in return
depress the excitatory neurons. As the inhibitory
neurons are depressed, the excitatory neurons start
to fire action potentials again, and the process
repeats itself.

The EEG record is a sum of all the electrical
activity of the neuron pools. As the number of
neurons is huge, the individual action potentials are
averaged out, and cannot be observed. But we can
still see the oscillatory activity of the neuron pools
(Fig. 1). In normal subjects, this oscillatory activity
falls in the following frequency bands: 8–13Hz
alpha band (mostly in relaxed state with eyes
closed), 15–30Hz beta band (mostly in awakened
or alerted state), 4–8Hz theta band (mostly in sleep)
and o4Hz delta band (only in deep sleep).
Additionally, the power of oscillatory activity
usually decreases with increasing frequency. For
more information about EEG activity please
see [19].

C.2. Electromyogram—EMG

The electromyogram represents a sum of action
potentials generated in muscle fibers. The entire
process starts when a nerve impulse travelling from
a spinal cord arrives to a neuromuscular junction.
Through a complex biochemical process it causes an
increase of the internal potential of a muscle fiber.
When this potential passes a certain threshold the
muscle fiber generates a spiky action potential,
which means the internal potential is rapidly
increased and subsequently decreased (this action
potential also evokes a contraction of the muscle
fiber). The sum of these spiky action potentials
creates a signal measured as the electromyogram
(Fig. 1). For more information about electromyo-
gram see [20].

C.3. EEG– EMG coherence

The electrical activity of a contracted muscle was
found coherent with the oscillatory activity of
neurons in a contralateral primary sensimotor area.
A small (about 0.1) but recognizable MSC was
observed in the beta (15–30Hz) and low gamma
(30–60Hz) bands during a moderate muscle con-
traction [21,9]. In the low gamma band the
MEG–EMG MSC was also observed during strong
contractions [1]. Occasionally, the EEG–EMG
MSC is found in the alpha band (6–12Hz) [22],
though there is some disagreement between the
individual findings [9].

Recently, the cortico-muscular coherence analysis
is being applied on the study of movement
disorders. An abnormal rise of the MSC was
reported in the patients suffering from cortical
myoclonus [2] and upper limb dystonia [23].
A frequency downshift of MSC was found in
the Parkinson patients, where the MSC peak
occurs at frequency of the parkinson rest tremor
below 10Hz [9]. Moreover, in the Parkinson
patients it is also possible to observe a rise of the
MSC at higher frequencies after the application of a
treatment [24]. A decrease of MSC is observed in the
stroke patients. The cortico-muscular coherence
analysis was also used to study essential and
exaggerated physiological tremor, even though the
published reports [25,26] were contradictory, and
failed to distinguish between the individual tremor
types [9]. Lastly, one of the future applications of
the cortico-muscular coherence can be in the
functional neurosurgery, where its possible use
would be to find the optimal position of deep brain
stimulating electrodes [9].

Appendix D. Computational complexity

In this section we derive computational complex-
ity of the pre-processing formula

u0½n� ¼
XK

k¼�K

akððu½n� � v½nþ k�Þ � b½n�Þv½nþ k�.

(D.1)

We will assume that the signal length N is
much greater than the length of the window
b½n�, 2M þ 1, and the length of the window ak,
2K þ 1.

According to the pre-processing formula, u½n� is
first multiplied by v½nþ k�, which takes N multi-
plications. Then the result is convolved with b½n�,
which requires N � ð2M þ 1Þ multiplications and N �

ð2MÞ additions. The result of convolution is multi-
plied by v½n� k� and ak, which takes 2N multi-
plications. Finally, this procedure is repeated
2K þ 1 times (for k ¼ �K ; . . . ;K). Thus the total
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number of operations approximately is

ð2K þ 1Þ � ðN þN � ð2M þ 1Þ þN � 2M þ 2NÞ,

(D.2)

which for NbM and MbK can be approximated
as

8KMN. (D.3)

The computational complexity can be reduced if the
convolution is realized through the Fast Fourier
transform. In this case, the convolution requires N �

log2ðNÞ operations.

Appendix E. Comparison of effects of different

windows b½n�

In this section we investigate if choosing window
b½n� other than Hamming has any affect on the
resulting coherence.

We compare enhanced MSCs computed using
Hamming, Kaiser and Blackman window. While
comparing effects of these windows in the spectral
domain of coherence, we want to keep the averaging
effects of the correlation estimate (10) unchanged.
Therefore, we want the correlation (10) to be
estimated with the same variance. We will, there-
fore, follow the derivation of the variance of a
correlation estimate in [13] (formulas (5.66)–(5.69)),
but before doing so we will adjust (10) slightly.
Namely, to simplify the derivation the summation
limits will be taken from �1 to 1, while the
signals will be considered zero if previously un-
defined. Additionally, we will use the substitution
z ¼ n�m

bRvun½k� ¼
X1

m¼�1

u½m�v½m� k�b½n�m�

¼
X1

z¼�1

u½n� z�v½n� z� k�b½z�. ðE:1Þ

Now, taking the expectation

Ruv½k� ¼ E½ bRuvn½k��

¼
X1

z¼�1

E½u½n� z�v½n� z� k��b½z�

¼ Ruv½k�
X1

z¼�1

b½z�, ðE:2Þ

suggests thatX1
z¼�1

b½z� ¼ 1. (E.3)
This scaling is not needed in the pre-processing,
since the MSC is invariant to the scaling; however, it
is required in this derivation.

Now, we will analyze the variance of (10)

Var½ bRvun½k�� ¼ E½ bR2

vun½k�� � R2
vu½k�

¼ E
X1

i;j¼�1

u½n� i�u½n� j�v½n� i � k�

"

�v½n� j � k�b½i�b½j�

#

� R2
vu½k�

X1
i;j¼�1

b½i�b½j�. ðE:4Þ

When we restrict u½v� and v½n� to be Gaussian the
forth order moment in (E.4) will be given by the
second order moments [13]X1
i;j¼�1

ðR2
vu½k� þ Ru½i � j�Rv½i � j�

þ Rvu½i � j � k�Rvu½i � j þ k�Þb½i�b½j�

� R2
vu½k�

X1
i;j¼�1

b½i�b½j�. ðE:5Þ

After some simplification and the substitution j ¼
i � j and c ¼ j we getX1
j;c¼�1

ðRu½j�Rv½j� þ Rvu½j� k�

�Ruv½jþ k�Þb½cþ j�b½c�

¼
X1

j¼�1

ðRu½j�Rv½j� þ Rvu½j� k�

�Ruv½jþ k�Þ
X1

c¼�1

b½cþ j�b½c�. ðE:6Þ

Consequently, the variance of correlation (10) will
be unchanged if

P1
c¼�1 b½cþ j�b½c� is kept con-

stant for all the windows b½n�. This, of course, is
impossible to assure for two arbitrary windows;
therefore, we have weakened this requirement, and
we require only thatX1
c¼�1

b½c�b½c� ¼
X1

c¼�1

b2
½c� is constant. (E.7)

Even this weakened requirement has provided
desired results.

Thus, we adjusted the length of the compared
windows so that they were able to meet (E.3)
and (E.7). Namely, we used 5000 samples long
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Hamming window, 6769 samples long Kaiser
window with parameter b ¼ 10 and 6335 samples
long Blackman window.

Each enhanced coherence was computed from
two artificially generated signals. These signals were
77 � 103 samples long (the same length as the
analyzed EEG signals) with true coherence shown
in Fig. 6(a). All the parameters of the pre-processing
and coherence computation were the same as the
ones used in the section Results. To allow compar-
ison of systematic errors we eliminated random
errors by computing the enhanced MSC in 250 trials
and taking an average of the results.

The resulting averaged MSCs are shown in Fig. 6.
In Fig. 6(b) there is the original MSC estimate.
Fig. 6(c)–(e) show the enhanced MSCs estimated
using Hamming, Kaiser and Blackman windows,
respectively.

To compare the averaged MSCs we computed the
differences between them. To evaluate if these
differences are of any importance to a single MSC
estimate we compared them to a magnitude of
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random errors represented by the width of MSC
confidence intervals hI low; Ihighi estimated as

I low ¼ m0:1 � jbgj2; Ihigh ¼ m0:9 � jbgj2, (E.8)

where jbgj2 denotes the averaged MSC estimate, and
m0:1 and m0:9 are 10% and 90% quantiles estimated
form the individual trials.

The differences between the estimated MSCs in
Fig. 6 are shown in Fig. 7. Figs. 7(a), (b) and (c)
show the difference between the averaged MSCs
computed using the Hamming and Kaiser window,
Hamming and Blackman window and Kaiser and
Blackman window, respectively.

According to Fig. 7 differences caused by
different systematic errors of different windows
b½n� are considerably smaller than the width of
confidence intervals, which represents the random
error. Therefore, we conclude that replacing the
Hamming window b½n� with another low leakage
window does not have any significant effect on the
resulting coherence.
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