Photodynamic Priming Mitigates Chemotherapeutic Selection Pressures and Improves Drug Delivery

Huang-Chiao Huang1,2, Imran Rizvi1,2, Joyce Liu1,2, Sriram Anbil1,2,3, Ashish Kalra4, Helen Lee4, Yan Baglo1,2, Nancy Paz4, Douglas Hayden5, Steve Pereira6, Brian W. Pogue7, Jonathan Fitzgerald4, and Tayyaba Hasan1,2,8

Abstract

Physiologic barriers to drug delivery and selection for drug resistance limit survival outcomes in cancer patients. In this study, we present preclinical evidence that a submicromolar photodynamic priming (PDP) strategy can relieve drug delivery barriers in the tumor microenvironment to safely widen the therapeutic window of a nanoformulated cytotoxic drug. In orthotopic xenograft models of pancreatic cancer, combining PDP with nanoliposomal irinotecan (nal-IRI) prevented tumor relapse, reduced metastasis, and increased both progression-free survival and 1-year disease-free survival. PDP enabled these durable improvements by targeting multiple tumor compartments to (i) increase intratumoral drug accumulation by >10-fold, (ii) increase the duration of drug exposure above a critical therapeutic threshold, and (iii) attenuate surges in CD44 and CXCR4 expression, which mediate chemoresistance often observed after multicycle chemotherapy. Overall, our results offer preclinical proof of concept for the effectiveness of PDP to minimize risks of tumor relapse, progression, and drug resistance and to extend patient survival. Significance: A biophysical priming approach overcomes key treatment barriers, significantly reduces metastases, and prolongs survival in orthotopic models of human pancreatic cancer.

Cancer Res; 78(2); 558–71. © 2017 AACR.

Introduction

Cancer is a constantly evolving disease that relies on both microenvironmental and molecular compartments to resist and adapt to therapeutic insults (1). Significant efforts have been invested in developing chemotherapeutics, biological agents, and cocktails to overcome resistance mechanisms and escape pathways (2,3). However, these intense multimodal regimens have largely been hindered by poor drug penetration into solid tumors (4), transient responses that fail to eradicate aggressive populations with distinct molecular features (5), and significant off-target toxicities associated with anticancer agents (6).

Here, we report a submicromolar photochemistry-based approach (hereafter referred to as photodynamic priming, PDP) that primes multiple tumor compartments to enable more potent and sustained antitumor activity of the FDA-approved nanoliposomal irinotecan (nal-IRI, also known as MM-398, PEP02, BAX2398; ref. 7). This unique photoinitiated approach offers multiple advantages (Fig. 1): (i) at the tumor microenvironment level, PDP enables spatiotemporally controlled targeting of physiologic barriers to drug delivery for enhanced therapeutic agent accessibility; (ii) at the molecular level, PDP overcomes chemotherapy-induced enrichment of stemness markers to suppress aggressive tumor relapse; and (iii) PDP’s submicromolar nature, distinct mechanism of action, and nonoverlapping toxicities, enhance chemotherapeutic efficacy with no additional side effects in vivo. We provide evidence that a clinically feasible PDP regimen realizes these complementary interactions to significantly potentiate the efficacy of multicycle nal-IRI, resulting in prolonged local tumor control, reduced metastatic burden, and enhanced survival outcomes in vivo in two mouse models of human pancreatic ductal adenocarcinoma (PDAC).

PDAC is a devastating disease characterized by a dense fibrous stroma, which impedes drug delivery, and by a profound resistance to standard chemotherapy (8). Therapeutic strategies designed to ablate this tumor-associated desmoplasia yielded disappointing clinical results (9,10), in part because PDAC-stroma interactions are extraordinarily complex and incompletely understood (11). In 2015, nal-IRI combined with 5-fluorouracil and leucovorin was approved to treat gemcitabine-refractory metastatic PDAC (12). Developed by Drummond and colleagues, nal-IRI improves the circulation half-life, pharmacokinetics, and intratumoral accumulation of irinotecan and its active metabolite, SN-38, while minimizing toxic side effects (13). The superior in vivo antitumor activity of nal-IRI, as compared with free irinotecan, is related to nal-IRI’s ability to extend the duration of intratumoral SN-38 above a critical threshold concentration.

Note: Supplementary data for this article are available at Cancer Research Online (http://cancerres.aacrjournals.org/).

H.-C. Huang, I. Rizvi, and J. Liu contributed equally to this article.

Corresponding Author: Tayyaba Hasan, Massachusetts General Hospital, Harvard Medical School, 40 Blossom Street, Boston, MA 02114. Phone: 617-726-6996; Fax: 617-724-1345; E-mail: thasan@mgh.harvard.edu
doi: 10.1158/0008-5472.CAN-17-1700
©2017 American Association for Cancer Research.
However, the high degree of variability in nal-IRI tumor deposition in vivo remains a challenge, presumably due to the low permeability of liposomes within some tumors, as described previously (14). Moreover, because PDAC cells are highly resistant to standard chemotherapy (8), it is increasingly evident that intensive chemotherapeutic regimens based on the MTD can impose selection pressures that reveal residual populations of intrinsic or acquired resistant clones, portending a poor outcome (15, 16). Prime examples of highly aggressive PDAC subpopulations include cells that overexpress hyaluronan receptor (CD44) and C-X-C chemokine receptor type 4 (CXCR4; refs. 17–19). These markers play pivotal roles in self-renewal, multineagence differentiation, chemoresistance, potent proliferative and metastatic capacity of PDAC, and correlate with poor prognosis in patients (17–19). Previous studies have shown that the first-line chemotherapy for PDAC, gemcitabine, induces a significant increase in CD44 (17.5-fold) and CXCR4 (20-fold) protein levels in PDAC cell lines (16, 20), and enriches CD44+ cell population by approximately 40% in patient-derived xenografts and patient samples of PDAC (21). Preventing the selection of these aggressive phenotypes while maintaining cytotoxic efficacy have become highly desirable attributes of any therapeutic regimen. Here, we demonstrate for the first time that PDP simultaneously increases the local nal-IRI concentration in tumors (by enhancing tumor permeability transiently), and attenuates the upregulation of CD44 and CXCR4 markers in nal-IRI-enhancing tumor permeability transiently), and attenuates the upregulation of CD44 and CXCR4 markers in nal-IRI-treated tumors in vivo, leading to superior treatment outcomes in orthotopic models of PDAC.

PDP is based on the hypothesis that spatiotemporal control of photosensitizer activation can induce enhanced tumor permeability secondary to single oxygen generation in the tumor vasculature, stroma, and parenchyma. In addition, because PDP is comprised of subtumoricidal photodynamic therapy (PDT; ref. 22), it has the added advantage of directly activating cancer apoptosis in such a way that bypasses multiple cell death signaling pathways that are typically required by conventional chemother-apy regimens to be effective. Kessel and colleagues first reported that PDT directly induces photodamage to the mitochondria- associated Bel-2 protein (a major antiapoptotic factor and mediator of drug resistance) to release mitochondrial cytochrome c (a potent proapoptotic signal), thereby initiating apoptosis (23). This direct pathway to cell death suggests that PDT, with sufficient colocalization of photosensitizer and light, is effective even against chemoresistant populations characterized by defective signaling pathways, and thus may prevent enrichment of these specific aggressive subpopulations and their associated molecular characteristics. Building on the recent clinical advances using PDT for locally advanced PDAC patients (24), our findings offer prospects to design new PDP-based approaches that offer dual advantages stemming from enhanced drug accessibility while minimizing treatment-induced molecular selective pressures for long-term antitumor efficacy, without additional side effects.

Materials and Methods

Nanoliposomal BPD and nal-IRI preparation

Nanoliposomal benzoporphyrin derivative (nal-BPD) was prepared via freeze–thaw extrusion technique as described previously (25). Briefly, dipalmitoylphosphatidylcholine (DPPC), cholesterol, distearoylphosphatidylethanolamine-methoxy polyethylene glycol (DSPE-PEG), and dioleoyltrimethylammonium-propane (DOTAP; Avanti Polar Lipids) were mixed in chloroform at 20:10:1.25 molar ratio. Two-hundred micromolars of BPD (U. S. Pharmacopeial Convention) was dissolved with lipids at a drug-to-lipid ratio of 0.6 mol%. Chloroform was removed by rotary evaporation overnight to afford a thin lipid film. The resulting lipid film was rehydrated with 1 mL of PBS at 45°C, and then subjected to freeze–thaw cycles (4°C–45°C) for 2 hours. The dispersion was then extruded ten times through 0.1-μm polycarbonate membranes at 42°C using a mini-extruder system to form unilamellar vesicles. Unencapsulated BPD photosensitizers were removed by dialysis (MWCO 300 kDa) against PBS. The resulting nal-BPD preparations displayed a particle size of 135 nm (Polydispersity index ~0.04) and a photosensitizer loading of 3 μg BPD/mmol phospholipid. Stability, shelf-life, singlet oxygen yield, photobleaching, quenching, drug release, in vitro pharmacokinetics, and biodistribution of nal-BPD were reported previously (25). The clinically approved nal-IRI and Dil(5)-dye-conjugated nal-IRI (Dil5-nal-IRI) were kindly provided by Merrimack Pharmaceuticals (13).

Cell culture

Human PDAC cancer cell lines, MiaPaCa-2 and AsPC-1, were purchased from ATCC. All cells were authenticated prior to receipt and were propagated for less than four months after resuscitation. Cultures were tested for mycoplasma as described previously (25). All cell lines were cultured in humidified CO2 atmosphere at 37°C using media recommended by the manufacturer.

Orthotopic mouse model and treatments

All treatment and care of animals were in accordance with the protocol approved by Massachusetts General Hospital (MGH, Boston, MA) Institutional Animal Care and Use Committee (IACUC). MIA PaCa-2 or AsPC-1 cells were implanted orthotopically in 4–6 weeks old male Swiss nude mice (20–25 g) to establish xenograft tumors. Animals were anesthetized with 100 mg/kg ketamine and 10 mg/kg xylazine, and a small left abdominal flank incision was made to exteriorize the pancreas. Subsequently, a suspension of 1 × 10^6 cancer cells in 25 μL of chilled culture media mixed with an equal volume of chilled Matrigel was injected into the mouse pancreas, and the incision was sutured aseptically. Treatments were initiated nine days after cancer cell implantation when tumor volumes reached approximately 50 mm^3—determined by ultrasound imaging (Vevo LAZR; VisualSonics) as described previously (25). Injections of nal-BPD and nal-IRI (20 mg/kg, hydrochloride salt) for treatment were done intravenously (tail vein) in 200–μL sterile PBS. Mice were randomized into groups that received (i) no treatment, (ii) PDP, (iii) nal-IRI (four cycles on days 9, 12, 17, and 21 after tumor implantation), (iv) single-cycle nal-IRI (sc-nal-IRI: one cycle on day 9 after tumor implantation) (v) PDP+sc-nal-IRI, (vi) PDP+nal-IRI. For subtumoricidal PDP, orthotopic tumors were surgically exposed (as for tumor implantation) at 1 hour after intravenous injection of nal-BPD (0.25 mg/kg BPD equivalent). Tumors of mice receiving nal-BPD were irradiated with NIR light using a 690 nm diode laser (High Power Devices), delivered at an irradiance of 100 mW/cm^2 to achieve a fluence of 75 J/cm^2. Following PDP, the incisions were closed with 4-0 Ethilon sutures and the animals were allowed to recover. Tumor growth in every animal was longitudinally monitored every 3–5 days using noninvasive ultrasound imaging as described previously. At each time point, tumor volume was calculated using

www.aacrjournals.org Cancer Res; 78(2) January 15, 2018 559

Downloaded from cancerres.aacrjournals.org on August 15, 2018. © 2018 American Association for Cancer Research.
hemielipsoid formula \((x \times L \times W \times H/6) \), where \(L \), \(W \), and \(H \) are the tumor length, width, and height), which was validated against the three-dimensional volume reconstruction algorithm of the Vevo2100 software (25). To calculate the specific growth rate (SGR) of tumor, the following formula was used: \(SGR = (1/V) \frac{dV}{dt} \), where \(V \) is tumor volume and \(t \) is time. Change in mouse body weight was monitored before tumor implantation and longitudinally after treatment as a metric of systemic toxicity. For survival studies, moribundity was used as the endpoint with proper justification and special approval by MGH IACUC. Progression-free survival (PFS) is defined as the time from treatment initiation to any increase in tumor volume or death from any cause.

Pharmacokinetic studies

When the average tumor volume reached approximately 50 mm\(^3\), mice were randomized into groups that received (i) no treatment, (ii) PDP, (iii) single cycle of nal-IRI at 20 mg/kg (sc-nal-IRI; on day 9 after tumor implantation), and (iv) PDP + sc-nal-IRI. At 1, 4, 24, 72, and 168 hours after treatment, mice were euthanized by CO\(_2\) asphyxiation followed by blood collection, and then mice were perfused with PBS prior to harvesting tumor and other normal tissues. Blood samples were collected in tubes containing lithium heparin and were centrifuged to separate the plasma immediately after sample collection. All samples were stored at \(-80^\circ\text{C}\) until analyses. Tumor and plasma were analyzed for irinotecan and SN-38 concentrations using the HPLC method described previously (14). Briefly, tumors were weighed and homogenized for 2 minutes in 20% w/v water using a TissueLyser (Qiagen). The homogenates were extracted by mixing 0.1-mL homogenate with 0.9 mL 1% acetic acid/methanol followed by 10-second vortexing and placing at \(-80^\circ\text{C}\) for 1 hour. The samples were centrifuged at 10,000 rpm for 10 minutes at room temperature and supernatants collected for HPLC analysis (Dionex). The samples and standards (irinotecan and SN-38) were analyzed using a C18 reverse phase column (Syngery Polar-RP 80A 250 × 4.60 mm, 4-\(\mu\)m column). The drug metabolites were eluted running a gradient from 30% acetonitrile; 70% 0.1% TFA/H\(_2\)O to 68% acetonitrile; 32% 0.1% TFA/H\(_2\)O during a 13 minutes span at a flow rate of 1.0 mL/minute. The initial elute composition was restored after 14 minutes and continued for 6 minutes before the next injection. The irinotecan peak was detected at approximately 7.7 minutes and the SN-38 peak eluted at approximately 8.4 minutes, using an in-line fluorescence detector excited at 372 nm and emitting at 556 nm.

Tumor vasculature and Dil5-nal-IRI fluorescence imaging

Tumor-bearing mice were randomized into groups that receive (i) no treatment, (ii) nal-BPD, (iii) PDP, (iv) Dil5-nal-IRI, and (v) PDP + Dil5-nal-IRI. At 4, 24, and 72 hours after treatment, mice were intravenous (tail vein) injected with 100 \(\mu\)L of fluorescein-labeled Lyopectum esculentum (tomato) lectin (1 mg/mL in PBS, Vector Laboratories) to label the vascular endothelium. At 5 minutes after tomato-lectin intravenous injection, mice were euthanized by CO\(_2\) asphyxiation followed by perfusion with PBS prior to harvesting tumors. Excised tissues were embedded in optimal cutting temperature compound and frozen at \(-80^\circ\text{C}\). A cryotome was used to cut 20-\(\mu\)m-thick cryosections. Sections were mounted (Invitrogen SlowFade Gold with 4',6-diamidino-2-phenylindole, DAPI) with a coverslip and sealed with nail polish. Confocal fluorescence imaging was performed using an Olympus Fluoview 1,000 confocal microscope with a 10 × 0.4 numerical aperture (NA) or a 20 × 0.75 NA objective. Excitation of DAPI, tomato-lectin–labeled vasculature, and DilC18(5)-DS dye conjugated nal-IRI (Dil5-nal-IRI) was carried out using 405, 488, and 635-nm lasers, respectively, with appropriate filters.

Immunofluorescence imaging of CD44 and CXCR4 markers

Treatment impacts on the tumoral expression of CD44, and CXCR4 were investigated. Briefly, orthotopic pancreatic tumors were excised on 60 and 120 days after tumor implantation (i.e., 51 and 111 days after treatment initiation), embedded in optimal cutting temperature compound and frozen at \(-80^\circ\text{C}\). A cryotome was used to cut 20-\(\mu\)m-thick cryosections. Sections were (i) fixed in ice-cold 1:1 acetone/methanol for 10 minutes, (ii) air dried for 30 minutes, and (iii) washed three times in PBS. A blocking solution (Dako Protein Block Reagent) was applied for 30 minutes followed by application of the immunostains, at approximately 5 \(\mu\)g/mL mAb) each diluted in background reducing Dako Antibody Diluent for overnight at 4°C in a humidifying chamber. Finally, the slides were washed again three times, mounted (Invitrogen SlowFade Gold with 4',6-diamidino-2-phenylindole, DAPI) with a coverslip and sealed with nail polish. Confocal fluorescence imaging was performed using an Olympus FluoView 1,000 confocal microscope with a 10 × 0.4 numerical aperture (NA) or a 20 × 0.75NA objective. Excitation of DAPI, anti-human cytokeratin 8 (clone LP3 K IC3165G; R&D Systems) mAb–Alexa Fluor 488 conjugates, and anti-human CD44 (clone DB105; Millenyi Biotec) mAb–APC-Vio770 conjugates was carried out using 405-, 405-, and 635-nm lasers, respectively, with appropriate filters. At least 10 images, evenly distributed across the entire tumor cross-section, were collected from 3 tumor samples for each condition.

Western blot analysis

Protein expression was analyzed using a standard Western blot analysis protocol (Bio-Rad). As briefly described, tissue lysates (10 \(\mu\)g) were separated on 10% precast polyacrylamide gel (Mini-PROTEAN TGX, Bio-Rad) and transferred onto polyvinylidene difluoride membrane (Thermo Fisher Scientific). Subsequent to blocking with 5% milk/TBST solution, proteins were further detected using antibodies against CD44 (1:1,000, Santa Cruz Biotechnology; sc-7946), CXCR4 (1:500, Abcam; ab93478), and E-cadherin (1:500, Abcam; ab15148). Anti-GAPDH antibodies (1:5,000, Cell Signaling Technology; 2118S) were used for loading control. Visualization of protein bands was developed by chemiluminescence (ECL, Bio-Rad) with exposure to X-ray film (Thermo Fisher Scientific). The quantitative analysis of protein expression was done using ImageJ software. Western blot analyses of target proteins were repeated at least three times.

Measurement of metastatic burden

A quantitative reverse transcription PCR (qRT-PCR) assay was performed on excised liver, lung, diaphragm, and para-aortic lymph nodes to estimate the number of human cancer cells in excised organs as described and validated previously (26). Briefly, qRT-PCR is used to measure the total number of human cancer cells from the level of human and mouse GAPDH housekeeping genes. The entire freshly excised liver, lung, diaphragm, para-aortic lymph nodes were collected at the treatment endpoint and snap frozen in liquid nitrogen. The frozen samples were then
pulverized and homogenized in TRIzol solution, followed by RNA extraction (RNAeasy Plus Mini Kit; Qiagen). Human and mouse GAPDH gene were measured using custom synthesized primers (Invitrogen). For each specimen, the cycle threshold (C_t) from human GAPDH gene was quantified into the number of cancer cells using a standard curve generated with a set of organ lysates from no tumor control mice mixed with different numbers of human cancer cells.

Data and material availability
The nal-IRI was obtained through an MTA.

Results
PDP induces physiologic changes in vascular permeability to enhance the tumor pharmacokinetics of nal-IRI

To evaluate PDP-mediated changes in tumor vascular permeability, DiIC18(5)-DS dye-conjugated nal-IRI (DiI5-nal-IRI) was administered by intravenous injection in mice bearing orthotopic MIA PaCa-2 tumors (50 mm3). Confocal imaging showed PDP enhanced DiI5-nal-IRI extravasation and accumulation in tumors at 4 hours after DiI5-nal-IRI injection (Fig. 2A). Without PDP, only a small amount of DiI5-nal-IRI extravasated along the immediate vicinity of tumor blood vessels at an average distribution area of 0.002 mm2 at 4 hours after injection. In contrast, PDP significantly broadened the intratumoral dissemination of DiI5-nal-IRI along the periphery of blood vessels by 100 times to 0.22 ± 0.02 mm2 (Fig. 2B; $P < 0.001$). Furthermore, DiI5-nal-IRI was highly retained in PDP-treated tumors for at least 24 hours (Fig. 2C). The ratio of the fluorescence signal intensities (FSI) of accumulated DiI5-nal-IRI at 4 and 24 hours after injection was found to be 6.2- and 10-fold higher in the PDP-treated tumors, respectively (Fig. 2C; $P < 0.001$), compared with the control tumors using the following equation: $\text{FSI}_{\text{PDP-treated}} / \text{FSI}_{\text{control}} = 6.2$ and 10.

Irinotecan is a camptothecin prodrug that is converted by carboxylesterases to produce the active SN-38 (7-ethyl-10-hydroxycamptothecin) metabolite, which is approximately 100- to 1,000-fold more potent (27). The tumor irinotecan and SN-38 pharmacokinetic profiles of nal-IRI were evaluated with and without PDP (Fig. 2D and E). In the orthotopic MIA PaCa-2 model, intravenous administration of a single cycle of nal-IRI (20 mg/kg irinotecan hydrochloride salt) resulted in 0.35%ID/g (1,390 ng/g) of tumor

Figure 1.
The concept of subtumoricidal photodynamic priming. Spatiotemporally controlled photodynamic priming (PDP) of tumor microvasculature and parenchyma simultaneously improves therapeutic agent accessibility and overcomes chemotherapeutic selection pressures. Subtumoricidal PDP increases tumor permeability to enhance intratumoral accumulation of chemotherapeutic agents for a prolonged period of time. In addition, it attenuates the insidious surge of stemness marker expression that is typically observed after multiple cycles of chemotherapy. Combining subtumoricidal PDP with cytotoxic chemotherapeutic agents prevents aggressive tumor regrowth, reduces metastatic burden, and enhances survival outcomes.
Figure 2.
PDP increases tumor vascular permeability to enhance nal-IRI delivery in an orthotopic PDAC model. Orthotopic MIA PaCa-2 tumors were exposed to 75 J/cm² of light (100 mW/cm²) 1 hour following intravenous injection of nal-BPD (0.25 mg/kg) and a single dose of DiI5-nal-IRI (20 mg/kg). Control tumors were only injected with DiI5-nal-IRI (20 mg/kg) without light treatment. A, Representative confocal fluorescence microscopy images of control tumors (top row) and PDP-treated tumors (bottom row) obtained 4 hours after intravenous injection DiI5-nal-IRI. In presence of PDP, DiI5-nal-IRI (red) was widely distributed throughout the tumor tissue and extravasated from the blood vessels (tomato lectin staining; green), whereas the signals arising from DiI5-nal-IRI in control tumors were confined to the immediate vicinity of the tumor blood vessels. No DiI5-nal-IRI signal was detected in the tumors treated with PDP alone. Nuclear staining (blue fluorescence, DAPI); Scale bar, 200 μm. B and C, Quantitative analyses of DiI5-nal-IRI fluorescence intensity (B) and distribution (C) showing PDP significantly enhanced DiI5-nal-IRI accumulation and extravasation within MIA PaCa-2 tumors 4 and 24 hours after DiI5-nal-IRI injection (n ≥ 3 animals per group; n ≥ 19 images per group; *** P < 0.001, Bonferroni-corrected Mann-Whitney U test). D and E, PDP-mediated changes in tumor pharmacokinetic profile of nal-IRI. Swiss nude mice bearing orthotopic MIA PaCa-2 tumors were treated with a single cycle of nal-IRI (nal-IRI, 20 mg/kg; IV; red line; solid square) or a combination of PDP and single cycle nal-IRI (20 mg/kg; IV; blue line; solid circle). Tumors were collected at various intervals and the irinotecan (D) and SN-38 (E) levels were measured by HPLC analysis (n ≥ 5 per time point; *** P < 0.001; ** P = 0.002; * P = 0.05, Bonferroni-corrected Mann-Whitney U test). F, Carboxylesterase (CES) activities in MIA PaCa-2 tumors were not modulated by PDP at various time posts after treatment (n = 3–9 animals per condition; Kruskal-Wallis one-way ANOVA). G, Comparison of tumoral irinotecan to SN-38 molar ratio at various time-points between "single cycle nal-IRI" monotherapy and "PDP + single cycle nal-IRI" arm. (n ≥ 5 per time point; solid lines are nonlinear fits; n.s., nonsignificant, P = 0.79, two-way ANOVA PDP-time interaction term). Results are mean ± SEM.
irinotecan 24 hours after injection (Fig. 2D). In contrast, following PDP + nal-IRI, intratumoral irinotecan levels were 11-fold higher (3.5%ID/g) and remained above 1%ID/g for 72 hours (Fig. 2D). Similarly, SN-38 cleared earlier from the tumors following nal-IRI injection to 12.8 ng/g (32.6 nmol/L) within 24 hours, while "PDP + nal-IRI"-treated tumors exhibited a high intratumoral SN-38 level of above 50 ng/g (127.4 nmol/L) for up to 72 hours following

Figure 3.
PDP of tumors extends the efficacy of multicycle nal-IRI chemotherapy for durable tumor control in two orthotopic PDAC models. A, In vivo treatment schedule: treatments were initiated nine days after MIA PaCa-2 or AsPC-1 cancer cell implantation when tumor volumes reached approximately 50 mm3 (see Materials and Methods). Mice were randomized into groups that received (i) no treatment, (ii) PDP (nal-BPD 0.25 mg/kg; 690 nm light at 100 mW/cm2 to achieve 75 J/cm2), (iii) nal-IRI (four doses, each at 20 mg/kg irinotecan hydrochloride salt, on days 9, 12, 17, and 21 after tumor implantation), and (iv) combination of PDP and nal-IRI (PDP + nal-IRI). Injections of nal-BPD (for PDP) and nal-IRI were done intravenously.

B–I, Orthotopic MIA PaCa-2 (B–E) and AsPC-1 (F–I) tumor volumes were longitudinally monitored by noninvasive ultrasound imaging. A combination of PDP and nal-IRI prolonged and enhanced tumor growth inhibition in both MIA PaCa-2 and AsPC-1 animal models compared with nal-IRI alone. (n = 9–13 for MIA PaCa-2 model; n = 5–7 for AsPC-1 model; *, P < 0.05; **, P < 0.001, one-way ANOVA with Tukey post hoc test for "nal-IRI" versus "PDP + nal-IRI" groups). C and G, Gross tumor volume changes were quantified between day 8 (one day prior to treatment) and approximately day 30 (21 days after treatment initiation) in MIA PaCa-2 (C) and AsPC-1 (G) orthotopic xenograft models. Approximately, a 90% reduction in mean tumor volume was observed in mice treated with "nal-IRI" and "PDP + nal-IRI" compared with the "no treatment" control animals. Asterisks denote significance compared with no treatment group or amongst the indicated groups at each time point (*, P < 0.05; **, P < 0.01; †††, P < 0.001; n.s., nonsignificant, Kruskal–Wallis one-way ANOVA with Dunn post hoc test). The SGR of tumors during the treatment period (D and H) and posttreatment period (E and I) was determined using the following formula: SGR = (1/\(V\))(d\(V\)/dt), where \(V\) is tumor volume and \(t\) is time. In the MIA PaCa-2 mouse model, shortly following the termination of treatment and up to 120 days, nal-IRI–treated animals experienced a rapid tumor regrowth at a significantly higher SGR (4.8 ± 0.3%/d), compared with the "no treatment" control tumors. In contrast, the combination of PDP and nal-IRI continued to suppress tumor growth to a low SGR (1.7 ± 0.9%/d) for a prolonged period of time up to 120 days (*, P < 0.05; **, P < 0.01; †††, P < 0.001, n.s., nonsignificant, Kruskal–Wallis one-way ANOVA with Dunn post hoc test; n = 9–13 mice per group for MIA PaCa-2 model; n = 5–7 for AsPC-1 model). Results are mean ± SEM.
Huang et al.

Figure 4.

PDP suppresses chemotherapy-induced enrichment of CD44 and CXCR4 expression in PDAC tumors. **A**, Representative immunofluorescence images of CD44 and CXCR4 in MIA PaCa-2 tumors subjected to (i) no treatment; (ii) PDP (nal-BPD 0.25 mg/kg; 690 nm light at 100 mW/cm² to achieve 75 J/cm²); (iii) four cycles of nal-IRI (nal-IRI; at 20 mg/kg each, on days 9, 12, 17, and 21); and (iv) PDP + nal-IRI. Significant increases in CD44 and CXCR4 expression were observed in tumors treated with nal-IRI alone at days 60 and 120 postimplantation; blue, DAPI (nuclei); red, CD44; green, CXCR4. Scale bar, 100 μm. **B** and **C**, To quantify immunofluorescence intensities, at least 25 images, evenly distributed across the entire tumor cross-section, were collected from at least three tumor samples for each condition. CD44 and CXCR4 fluorescence intensities were normalized to DAPI area per image. Relative CD44 and CXCR4 levels were found to be significantly higher in the “nal-IRI” groups compared with other groups. (*, P < 0.05; **, P < 0.01; ***, P < 0.001, Kruskal–Wallis one-way ANOVA with Dunn post hoc test) Asterisks denote significance compared with the no treatment group or among the indicated groups at each time point. (Continued on the following page.)
PDP of local tumors followed by multicyle nal-IRI prevents rapid tumor regrowth and synergistically enhances long-term tumor growth inhibition

To assess the efficacy of PDP and nal-IRI in controlling localized tumors in vivo, treatments were performed 9 days following orthotopic implantation of MIA PaCa-2 or AsPC-1 human PDAC cells in mice, when tumors reached approximately 50 mm³ in volume. The following treatments were randomly administered to mice: (i) no treatment; (ii) PDP; (iii) nal-IRI; and (iv) PDP+nal-IRI (Fig. 3A). For PDP, light (690 nm) irradiation was performed one hour after a single intravenous injection of a nanoliposomal formulation of the photosensitizer, benzoporphyrin derivative (nal-BPD) at 0.25 mg/kg, to induce subtumoral cancer cell permeabilization. The 1-hour photosensitizer–light interval was used to achieve a balanced distribution of nal-BPD in both the tumor vasculature and parenchyma, based on our previous experience (28). Four intravenous injections of nal-IRI were administered over two weeks, and each injection contained 20 mg/kg irinotecan hydrochloride salt. Tumor growths were longitudinally monitored using noninvasive ultrasound imaging. In MIA PaCa-2 tumors (derived from a primary tumor), both “PDP+nal-IRI” and “nal-IRI” exhibited a significant inhibition of tumor growth during the treatment period, whereas continued tumor growth was observed in “no treatment” and “PDP” over this same period (Fig. 3B–D). At 30 days postimplantation, the mean tumor volume reduction in mice treated with “nal-IRI” and “PDP+nal-IRI” was 89% and 96%, respectively, compared with “no treatment” animals (Fig. 3C). However, shortly after termination of treatment and up to 120 days following implantation, animals treated with “nal-IRI” experienced a rapid tumor regrowth at a SGR of 4.8 ± 0.3%/day, which is significantly higher than the 2.6 ± 0.2%/day SGR in “no treatment” (P < 0.05; Fig. 3E). In contrast, “PDP+nal-IRI” not only significantly inhibited tumor volume growth by 96% by day 32 (with a SGR of –4.7 ± 1%/day; Fig. 3D), but also continued to suppress tumor growth at an SGR of 1.7 ± 0.9%/day for a prolonged period of up to 120 days (Fig. 3E). The effect of “PDP+nal-IRI” on tumor growth inhibition was found to be highly synergistic compared with monotherapies (P = 0.0041; Supplementary Fig. S1). Furthermore, mouse body weight was longitudinally monitored before and after treatment as a metric of toxicity (Supplementary Fig. S2). In “PDP+nal-IRI” animals, the change in mouse weight was consistent with “nal-IRI” mice, indicating that PDP does not appreciably add to the in vivo systemic toxicity. The gain in mouse weight after single cycle nal-IRI was comparable with the combination of PDP and a single-cycle nal-IRI, whereas a transient loss in mouse weight of up to 8% was observed following four cycles of nal-IRI treatment both in presence and absence of PDP. These observations suggest that the subcutaneous PDP approach does not further increase the systemic toxicity of nal-IRI in mice. The long-term efficacy of “PDP+nal-IRI” was also evaluated in a model for more aggressive PDAC using AsPC-1 cells derived from a metastatic lesion (Fig. 3F–I). In agreement with the literature, AsPC-1 tumors in “no treatment” controls exhibit a significantly higher tumor SGR (10.9 ± 0.4%/day), compared with MIA PaCa-2 tumors (6.7 ± 0.7%/day; P = 0.0025). Both “nal-IRI” and “PDP+nal-IRI” significantly reduced AsPC-1 tumor volume growth for at least 30 days, but did not completely arrest tumor growth (Fig. 3E–G). However, between days 30 and 120, AsPC-1 tumors that received “PDP+nal-IRI” exhibited a much lower regrowth rate (3.7 ± 0.7%/day), compared to “no treatment” (~6%/day; P < 0.05; Fig. 3H). Ultimately, combining PDP with nal-IRI resulted in superior AsPC-1 volume control compared with the nal-IRI–treated tumors at day 120 (P < 0.05; Fig. 3D).

PDP overcomes chemotherapeutic selection pressures that cause upregulation of cancer stem cell markers and dedifferentiation

To assess whether the rapid MIA PaCa-2 tumor regrowth following four cycles of nal-IRI observed in Fig. 3B occurred as a result of chemotherapeutic selection pressures, we assessed the expression of CD44, CXCR4, and E-cadherin, which are associated with tumor progression, stemness, and differentiation. Tumors were harvested at days 60 and 120 following implantation because they approximated the time points of significant post-treatment tumor regrowth for the “nal-IRI” and “PDP+nal-IRI” groups, respectively (Fig. 3B). Immunofluorescence imaging (Fig. 4A) revealed that four cycles of nal-IRI treatment significantly enriched CD44 and CXCR4 expression by approximately 180% compared with the “no treatment” tumors at day 60 (P ≤ 0.05; Fig. 4B and C). In contrast, PDP alone did not promote CD44 and CXCR4 expression of in MIA PaCa-2 tumors. Interestingly, “PDP+nal-IRI” not only significantly reduced the expression of CD44 (~65%–80% reduction; P < 0.01) compared with the monotherapies, but it also maintained CXCR4 expression at the baseline level by day 60. Similarly at day 120, confirmed by Western blot analysis (Fig. 4D and E), the expression of CD44 and CXCR4 were approximately 2-fold higher in the nal-IRI–treated tumors compared with the “no treatment” and “PDP alone” groups. In contrast, “PDP+nal-IRI” was able to maintain CD44 and CXCR4 expressions at a baseline level despite tumor growth after treatment. Tumoral CD44⁺, CXCR4⁺, and CD44⁺/CXCR4⁺ cell populations were evaluated by immunofluorescence double staining at days 60 day 120 (Fig. 4F). At day 120 (Fig. 4G), nal-IRI treatment increased the tumoral CD44⁺, CXCR4⁺, and CD44⁺/CXCR4⁺ areas by approximately 1.22–1.59– and 2-fold, respectively, compared with no treatment tumors. Both “PDP”...
and "PDP+nal-IRI" significantly reduced CD44+, CXCR4+, and CD44+/CXCR4+ cell populated areas by approximately 43%, 71%, and 50% respectively, compared with "nal-IRI"-treated tumors. At day 60, immunoblotting showed that nal-IRI-treated tumors exhibited the highest level of E-cadherin expression (Fig. 4H and I) relative to all other groups. However, at day 120, "no treatment," "PDP," and "nal-IRI" tumors exhibited a complete loss of E-cadherin expression, whereas a strong expression of E-cadherin was observed in the "PDP+nal-IRI" group. These data suggest that at early time points (day 60), with chemotherapy alone there is evidence of E-cadherin–enriched population. However, as the disease progresses (day 120), only the combination of PDP and nal-IRI overcomes chemotherapy-induced selection pressures, as evidenced by decreased levels of the stemness markers CD44 and CXCR4 and increased expression of E-cadherin. To investigate whether this time-dependent shift toward a population distribution with a less stem-like and a more differentiated phenotype may reduce tumor spread and improve outcomes, we evaluated metastases control and long-term (>1 year) survival benefit of "PDP+nal-IRI."

PDP of primary tumors enhances nal-IRI chemotherapeutic control of metastases

Locally advanced PDAC often metastasizes to distant organs. Our orthotopic mouse model of PDAC resembles typical clinical patterns of dissemination, displaying (i) extensive primary tumor growth that extends to the stomach and duodenum, (ii) metastatic infiltrates to the liver, and (iii) distant metastases to the retroperitoneal lymph nodes, diaphragm, and lung (Supplementary Fig. S3). The combination of PDP with four cycles of nal-IRI on metastasis control was evaluated in mice bearing orthotopic Mia PaCa-2 tumors (Fig. 5A). At day 60, both "PDP+nal-IRI" and "nal-IRI" significantly reduced the liver and distant organ metastatic burden by at least 22,000-fold, as compared with the "no treatment" group (Fig. 5B and C). Subtumoricidal PDP alone did not significantly reduce the metastatic burden, compared with the "no treatment" (Fig. 5B and C). These results suggest that the metastatic disease is primarily and effectively controlled by "nal-IRI" at early timepoints. At day 60, both "nal-IRI" and "PDP+nal-IRI" completely inhibited liver metastasis and significantly reduced distant organ (lung; diaphragm, lymph node) metastases to less than 50 cancer cells, compared with "no treatment" mice (>1 million cancer cells at lung, diaphragm, lymph node; Fig. 5D). Importantly, the benefit in controlling metastases provided by nal-IRI alone over 60 days was lost by day 120. Only "PDP+nal-IRI" achieved a significant reduction in the overall and distant organ metastases by an average of approximately 16,000-fold and approximately 40,000-fold (P < 0.01), respectively, compared with "no treatment" (Fig. 5D). In contrast, metastatic burden in the "nal-IRI" group was not significantly different from "no treatment" mice at day 120 (Fig. 5D). In addition to metastatic burden, the incidence of metastases in the Mia PaCa-2 mouse model was monitored at days 60 and 120. At day 60 (when diaphragm metastases were observed in 100% of animals), "PDP+nal-IRI" significantly reduced the incidence of diaphragm metastases by 66%, while "nal-IRI" did not reduce the incidence of metastasis (Fig. 5E). Consistent with the metastatic burden data, by day 120, the incidence of liver, lung, and lymph node metastases in the "PDP+nal-IRI" mice was dramatically reduced to 6.7% and 33%, respectively, in contrast to the high incidence of liver and distant metastases (60%–100%) for the "no treatment," "PDP," and "nal-IRI" groups (Fig. 5E).

PDP and multicycle nal-IRI prolong survival and reduce endpoint disease burden in two PDAC models

Most patients with PDAC are diagnosed at an advanced stage and rapidly succumb to their disease. It was, therefore, critical to determine whether the significant and prolonged improvement in metastasis control provided by "PDP+nal-IRI" translated to durable survival enhancement. Using morbidity as the endpoint (Fig. 6A), the orthotopic models of Mia PaCa-2 and AsPC-1 cells demonstrated median survival times of 146 days (4.9 months) and 82.5 days (2.75 months), respectively (Fig. 6B–D). In the Mia PaCa-2 model, subtumoricidal PDP combined with four cycles of nal-IRI significantly prolonged the median overall survival (OS) to 280 days (9.3 months), compared with 170 days (5.6 months) with "nal-IRI" (Fig. 6B; P < 0.01). All animals in the "no treatment" and "nal-IRI" groups were dead at days 228 and 215, respectively. In the "PDP" group, 92% of the mice died by day 208, while 1 of 13 (8%) survived to day 337. Importantly, 25% of animals in the "PDP+nal-IRI" group survived to day 450 (~1.23 years), when the study was terminated. The pancreas and distant organs in the mice treated with "PDP+nal-IRI" were confirmed to be tumor-free by ultrasound imaging, complete necropsy, and qRT-PCR (see Materials and Methods). Combined PDP and multicycle nal-IRI doubled the median PFS of Mia PaCa-2 tumor-bearing mice to 76 days (2.53 months), compared with the PFS of mice treated with "nal-IRI" (35 days; P < 0.001; Fig. 6C). It is noteworthy that although the combination of PDP and a single cycle of nal-IRI, synergistically reduced acute tumor burden (Supplementary Fig. S1), no survival benefit was observed (Supplementary Fig. S4). These findings highlight the difficulty in achieving meaningful improvements in treatment response for PDAC and emphasize the need for combination regimens designed to provide durable tumoricidal control. In the AsPC-1 model, combined PDP and four cycles of nal-IRI achieved approximately 18% tumor-free animal survival and significantly prolonged the median OS of mice to 214 days (7.1 months), compared with 82.5 days (~2.75 months) in "no treatment" mice (P = 0.024; Fig. 6D). Although the mice treated with nal-IRI also demonstrated an improved median OS of 170 days (5.6 months), it was found to be nonsignificant (P = 0.3) compared with the "no treatment" mice. These results, in two animal models, suggest that subtumoricidal PDP of primary tumors is crucial to achieving significant and durable survival benefits with nal-IRI. The forest plot (Fig. 6E) summarizes the HR data across multiple variables. Here, the HR is defined as the ratio of the probability of death in the treatment arm to the probability in the no treatment arm, and represents the instantaneous risk over the study time period. A HR of less than 0.2 (P < 0.05) observed in the "PDP+nal-IRI" group in both Mia PaCa-2 and AsPC-1 models, suggests that animals in "PDP+nal-IRI" group at any given time point were five times more likely to survive by the next time point compared with the no treatment group. In contrast, all other treatment groups cross the 1.0 value, indicating the HR is not significant and there is no clear advantage for "PDP" and "nal-IRI" alone compared with the "no treatment" arm.

We further evaluated the primary tumor weight, ascitic fluid volume, and metastatic burden of animals that reached the moribundity endpoint (excluding tumor-free animals). We observed that "PDP+nal-IRI" reduced primary tumor weight by
50% in these mice, compared with tumors treated with nal-IRI alone (Fig. 6F; \(P = 0.056 \)). Furthermore, "nal-IRI" and "PDP+nal-IRI" significantly reduced the mean ascitic fluid volume to 1.2 \(\pm \) 0.6 mL (Fig. 6G; \(P < 0.05 \)), compared with the substantial ascitic fluid accumulation (7.6 \(\pm \) 1.2 mL) observed in the "no treatment" and "PDP" groups. Metastatic burden in mice that reached morbidity was similar in both the "PDP+nal-IRI" and "nal-IRI" groups (Supplementary Fig. S5).

Discussion

Nanoliposomal delivery systems offer tools to improve the pharmacokinetic and safety profiles of cytotoxic drugs (29). Nal-IRI, with a favorable irinotecan pharmacokinetic profile, is presently being incorporated into standard treatment paradigms for patients with gemcitabine-refractory metastatic PDAC, due to manageable safety and substantial improvement in survival
outcomes (7, 12). Previously, we employed photochemistry to damage multidrug efflux transporter proteins, thereby increasing the intracellular accumulation of nal-IRI in cancer cells (25). Here, we introduce the concept of subtumoricidal PDP and demonstrate its ability to (i) acutely enhance the intratumoral distribution of nal-IRI by covering 100-fold greater portion of the tumor volume, (ii) elevate intratumoral nal-IRI concentrations up to 11-fold at 24 hours after nal-IRI injection, and (iii) maintain high intratumoral SN-38 concentrations for an extended period of 72 hours. Further investigations into the role of PDP in disrupting and permeabilizing the tumor-associated extracellular matrix are warranted to fully exploit this approach as a tool to modulate primary tumor permeability and enhance cytotoxic drug penetration. Importantly, the spatiotemporal selectivity of PDP,

Figure 6.
PDP and multicycle nal-IRI achieve durable and significant survival enhancement and reduce endpoint disease burden in two orthotopic PDAC models. A, Swiss nude mice were orthotopically inoculated with MIA PaCa-2 or AsPC-1 cells, divided into four groups, and subjected to (i) no treatment; (ii) PDP (day 9 postimplantation; nal-BPD, 0.25 mg/kg; 690 nm light at 100 mW/cm² to achieve 75 J/cm²); (iii) multiple cycles of nal-IRI (nal-IRI; four doses at 20 mg/kg each on days 9, 12, 17, and 21 postimplantation); and (iv) PDP + nal-IRI. Moribundity was used as the endpoint for the survival study with proper justification and special approval by the MGH IACUC. Animals were monitored for up to 450 days (15 months). B and C, Kaplan–Meier plot of overall animal survival (B) and PFS (C) in MIA PACa-2 model (n = 9–13 animals per group). D, Kaplan–Meier plot of animal overall survival in the AsPC-1 model. (n = 4–7 animals per group). E, Median survival time, HR forest plot, and differences in survival were evaluated by the log-rank test. A global test demonstrated a difference exists among the groups. Specifically, pairwise comparisons were performed to evaluate the advantage of treatment over no treatment. Animals treated with PDP + nal-IRI were found to be significantly less likely to die by the next time point (HR < 1). No advantage to monotherapies (compared with no treatment) were observed. Primary tumor weight, metastatic burden, and ascites volume were evaluated at animal death or day 450. F, The combination of PDP + nal-IRI signiﬁcantly reduced the endpoint primary tumor weight by half compared with the monotherapies and the no treatment group (n = 3–5 animals per group; *, P < 0.05, unpaired t test). G, The ascites formation in moribund animals were signiﬁcantly reduced after ”nal-IRI” and ”PDP + nal-IRI” treatments, compared with the ”no treatment” arm (n = 5–6 animals per group; *, P < 0.05; **, P < 0.01, unpaired t test). Asterisks denote signiﬁcance compared with no treatment group or among the indicated groups at each time point. Results are mean ± SEM.
achieved by both passive accumulation of nontoxic photosensitizers and light delivery using optical fiber technology, helped confine this enhanced delivery and pharmacokinetic benefit to the desired disease sites, thereby limiting undesired systemic off-target toxicities. This multilayered selectivity limits the adverse events typically seen in clinical PDAC to mild abdominal pain, skin irritation, and photosensitivity (24), all of which are non-overlapping with the major side effects of nal-IRI (e.g., neutropenia and diarrhea; ref. 7), thus affording a compelling, if often overlooked, rationale to photochemically prime the tumors for nal-IRI. In addition, clinically approved dosing of nal-IRI for PDAC patients is 70 mg/m², and comprises an average of 5.875 cycles (30). In two preclinical in vivo orthotopic mouse models, we show that superior outcomes could be achieved with PDP followed by four cycles of nal-IRI at a clinically relevant dose of 20 mg/kg (equivalent to human dose ~60 mg/m²) over several weeks without compromising nal-IRI efficacy or increasing off-target toxicities. The long-term durability (weeks) of the effect of PDP in enhancing drug delivery is not yet clear, but the combination of periodic PDP and multicycle nal-IRI could potentially further prolong chemotherapeutic retention in tumors and merits a comprehensive investigation. Furthermore, advances of multifunctional nanopolosomal formulations coupled with targeted delivery of photosensitizers and chemotherapeutic agents hold high potential for periodic PDP-based combination therapy to further improve therapeutic outcomes in the future (26, 31).

Although clinical chemotherapy regimens can appear to be quite effective for advanced PDMC during the treatment period, the use of intensive treatments at the MTD may allow for competitive and unopposed proliferation of resistant cancer cell populations (32, 33). In our study, four cycles of nal-IRI effectively arrested local tumor growth and reduced metastatic burden for two months in orthotopic PDAC mouse models. At one month following treatment termination, a rapid aggressive disease relapse occurred in the MIA PaCa-2 model, but not in AsPC-1. This variation in treatment response is not surprising, as the two cell lines are of different origin and characteristics. MIA PaCa-2 cells are characterized to be CD44+, CD24-, and CD133+/1- (34, 35), and were derived from the pancreas of a patient without prior treatments (36). On the other hand, AsPC-1 cells (CD44+, CD24+; ref. 37) were obtained from the ascites of a metastatic PDAC patient whose disease had already failed both radiation and chemotherapy (36). Not surprisingly, these cells express higher levels of CD44 (37), greater tumorigenicity, and chemoresistance (36, 38). While first-line gemcitabine chemotherapy induces up to 20-fold increase in CD44 and CXCR4 expressions in PDAC cell lines (16, 20), we showed that the MIA PaCa-2 tumor relapse following multicycle nal-IRI treatment was accompanied by a 2-fold increase in the tumoral expression of the CD44 and CXCR4 cancer stem-like cell markers. A number of carefully thought-out regimens exploiting the evolutionary dynamics of cancer progression have been proposed for more durable outcomes. Since Fidler and Ellis proposed that “Cancer is a chronic disease and should be treated like other chronic diseases” in 2000 (39), new drug administration and therapeutic modalities have been introduced. Most notable amongst these regimens are Hanahan’s "metronomic therapy" (40), Folkman, Kerbel and others studies of using antiangiogenic therapy to "turn cancer into a manageable chronic disease" (41, 42), Gatenby's "adaptive therapy" (43), as well as the "evolutionary double bind" and "stemming tumor growth" methods (44). However, the actual benefits of these approaches have not yet been confirmed in large-scale clinical trials, presumably because regimens are cumbersome, labor-intensive, and expensive. Here, for the first time, we show that the agnostic nature of PDP modulates all cells alike, mitigating the enrichment of stemness markers (CD44 and CXCR4) and preserving the expression of differentiation markers (E-cadherin), thereby preventing rapid tumor regrowth and extending the period of tumor growth inhibition. Enrichment in the CD44 and CXCR4 markers represents an unintended ‘Achilles’ heel’ for current chemotherapeutic regimens, and both markers are emerging as potential targets for PDAC treatment (3). The ability of PDP to effectively modulate these markers offers a unique opportunity to potentially alter cancer cell–stromal cell crosstalk, reverse chemoresistance, and inhibit metastases.

Clinical studies of treatment failure patterns in PDAC patients have revealed that approximately 30% of patients died with locally destructive disease, whereas 70% died with widespread metastatic disease that most commonly involves the liver in combination with peritoneal and/or lung metastases (45). Systemic nal-IRI chemotherapy appears to be very effective in controlling metastases already, and the PDP approach not only sensitizes primary tumors to nal-IRI for a prolonged acute control, but also further reduced metastatic burden. Typically, tumoricidal photodynamic therapy (PDT) can also elicit distant antitumor effects due to the immune stimulation (46), and the fact that our in vivo models used in this study were immunocompromised suggests that the indirect metastatic control afforded by subtherapeutic PDP is secondary to (i) tumor-specific ablation, (ii) increased cytokine or chemokine expression of differentiation markers (E-cadherin), thereby precluding rapid tumor regrowth and extending the period of tumor growth inhibition. Enrichment in the CD44 and CXCR4 markers represents an unintended ‘Achilles’ heel’ for current chemotherapeutic regimens, and both markers are emerging as potential targets for PDAC treatment (3). The ability of PDP to effectively modulate these markers offers a unique opportunity to potentially alter cancer cell–stromal cell crosstalk, reverse chemoresistance, and inhibit metastases.

Clinical studies of treatment failure patterns in PDAC patients have revealed that approximately 30% of patients died with locally destructive disease, whereas 70% died with widespread metastatic disease that most commonly involves the liver in combination with peritoneal and/or lung metastases (45). Systemic nal-IRI chemotherapy appears to be very effective in controlling metastases already, and the PDP approach not only sensitizes primary tumors to nal-IRI for a prolonged acute control, but also further reduced metastatic burden. Typically, tumoricidal photodynamic therapy (PDT) can also elicit distant antitumor effects due to the immune stimulation (46), and the fact that our in vivo models used in this study were immunocompromised suggests that the indirect metastatic control afforded by subtherapeutic PDP is secondary to (i) tumor-specific ablation, (ii) increased cytokine or chemokine expression of differentiation markers (E-cadherin), thereby precluding rapid tumor regrowth and extending the period of tumor growth inhibition. Enrichment in the CD44 and CXCR4 markers represents an unintended ‘Achilles’ heel’ for current chemotherapeutic regimens, and both markers are emerging as potential targets for PDAC treatment (3). The ability of PDP to effectively modulate these markers offers a unique opportunity to potentially alter cancer cell–stromal cell crosstalk, reverse chemoresistance, and inhibit metastases.
4 cycles) was used in in vivo study, compared with clinically approved dose (70 mg/m²); an average of ~6 cycles). Further research to assess the therapeutic effects of combining PDP with the second-line (nal-IRI + 5-fluorouracil + leucovorin) or first-line (FOLFIRINOX) chemotherapies is warranted.

In summary, we suggest that cancers, which are dynamic evolutionary systems exhibiting significant physical barriers to effective drug delivery, may be better managed by PDP combined with chemo or biologic agents. Subcutanocural PDP offers a unique solution to address these obstacles, showing promise for clinical translation to improve therapeutic accessibility and address undesired chemotherapeutic-selective pressures for a long-term survival benefit in PDAC models. Given that the feasibility of PDT has already been demonstrated in early PDAC clinical trials (24), leveraging our PDP approach to address the evolutionary challenges associated with standard chemotherapy and increased permeability to enhance the therapeutic index of conventional agents merits further investigations at preclinical and clinical levels.

Disclosure of Potential Conflicts of Interest
H. Lee is a senior development scientist at Sanofi US. No potential conflicts of interest were disclosed by the other authors.

Disclaimer
The content is solely the responsibility of the authors and does not necessarily represent the official views of Harvard Catalyst, Harvard University and its affiliated academic healthcare centers, or the NIH.

Authors’ Contributions
Conception and design: H.-C. Huang, I. Rizvi, J. Liu, H. Lee, S.P. Pereira, J.B. Fitzgerald, T. Hasan

References

Development of methodology: H.-C. Huang, I. Rizvi, J. Liu, Y. Baglo

Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): H.-C. Huang, I. Rizvi, J. Liu, S. Anbil, Y. Baglo, N. Paz

Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): H.-C. Huang, I. Rizvi, J. Liu, S. Anbil, A. Kalra, H. Lee, Baglo, D. Hayden, S.P. Pereira, B.W. Pogue, T. Hasan

Writing, review, and/or revision of the manuscript: H.-C. Huang, I. Rizvi, J. Liu, S. Anbil, A. Kalra, Y. Baglo, S.P. Pereira, B.W. Pogue, J.B. Fitzgerald, T. Hasan

Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): H.-C. Huang, I. Rizvi, B.W. Pogue, T. Hasan

Study supervision: H.-C. Huang, T. Hasan

Acknowledgments
This work was conducted with support from (i) the Photopharmacology Center of the Wellman Center for Photomedicine, Massachusetts General Hospital, and (ii) the Harvard Catalyst, The Harvard Clinical and Translational Science Center (National Center for Research Resources and the National Center for Advancing Translational Sciences, NIH award UL1 TR001102), and financial contributions from Harvard University and its affiliated academic healthcare centers. This work was also supported by NIH grants P01CA084203, R01CA156177, R01CA160958 (T. Hasan), R99CA194269 (H.-C. Huang), R09CA175292, R00CA175292 (I. Rizvi), and Massachusetts General Hospital Tosteson Fellowship 224889 (H.-C. Huang). S. Anbil is a Howard Hughes Medical Institute Medical Research Fellow. S. Pereira was supported by the National Institute for Health Research University College London Hospitals Biomedical Research Centre.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received June 7, 2017; revised September 13, 2017; accepted November 15, 2017; published OnlineFirst November 29, 2017.
Photodynamic Priming Mitigates Chemotherapeutic Selection Pressures and Improves Drug Delivery

Huang-Chiao Huang, Imran Rizvi, Joyce Liu, et al.

Updated version
Access the most recent version of this article at:
doi:10.1158/0008-5472.CAN-17-1700

Supplementary Material
Access the most recent supplemental material at:
http://cancerres.aacrjournals.org/content/suppl/2017/11/29/0008-5472.CAN-17-1700.DC1

Cited articles
This article cites 50 articles, 12 of which you can access for free at:
http://cancerres.aacrjournals.org/content/78/2/558.full#ref-list-1

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pub@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link
http://cancerres.aacrjournals.org/content/78/2/558. Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.