PhD Preliminary Qualifier
Primary assistive devices to help rehabilitation of people with neurological disorders can be categorized into: a wearable robotic system and a neuroprosthetic system. These devices usually operate in closed-loop require a systematic understanding of modeling physical human robot or neuroprosthetic interaction, estimation of sensory feedback from the human physiological, neural or musculoskeletal state, and designing control algorithms that guarantee human safety and desired rehabilitation outcomes. The latter algorithms may need learning or adaptability due to uncertain physical human robot interaction or changing human strength and behavior.
This PhD qualifier exam wants to test your ability to understand and apply these concepts in the field of rehabilitation engineering. The test will have two parts: a written component and a simulation and report component. You will be 48 hours to complete the exam. The scope of testing include:
1. Musculoskeletal model: one should be able to derive toques (inverse dynamics) from a musculoskeletal model, a Hill model of muscle force generation, applying Newton-Euler method or Lagrangian formulation to derive 2-3 degree of freedom dynamic model, 
2. Forward and inverse kinematics
3. Control schemes such as admittance control/ impedance control
4. Control techniques such as LQR, feedback linearization, sliding mode control, Learning and adaptation
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