Abstract—During the past several years, several strategies have been proposed for control of joint movement in paraplegic subjects using functional electrical stimulation (FES), but developing a control strategy that provides satisfactory tracking performance, to be robust against time-varying properties of muscle–joint dynamics, day-to-day variations, subject-to-subject variations, muscle fatigue, and external disturbances, and to be easy to apply without any re-identification of plant dynamics during different experiment sessions is still an open problem. In this paper, we propose a novel control methodology that is based on synergistic combination of neural networks with sliding-mode control (SMC) for controlling FES. The main advantage of SMC derives from the property of robustness to system uncertainties and external disturbances. However, the main drawback of the standard sliding modes is mostly related to the so-called chattering caused by the high-frequency control switching. To eliminate the chattering, we couple two neural networks with online learning without any offline training into the SMC. A recurrent neural network is used to model the uncertainties and provide an auxiliary equivalent control to keep the uncertainties to low values, and consequently, to use an SMC with lower switching gain. The second neural network consists of a single neuron and is used as an auxiliary controller. The control law will be switched from the SMC to neural control, when the state trajectory of system enters in some boundary layer around the sliding surface. Extensive simulations and experiments on healthy and paraplegic subjects are provided to demonstrate the robustness, stability, and tracking accuracy of the proposed neuro-adaptive SMC. The results show that the neuro-SMC provides accurate tracking control with fast convergence for different reference trajectories and could generate control signals to compensate the muscle fatigue and reject the external disturbance.

Index Terms—Functional electrical stimulation (FES), neural network, sliding-mode control (SMC).

I. INTRODUCTION

FUNCTIONAL neuromuscular stimulation (FNS) is a promising technique for restoring movement to paralyzed limbs following spinal cord injury, head injury, stroke, and multiple sclerosis [1]–[5]. In FNS systems, sequences of current pulses excite the intact peripheral axon, which, in turn, contract paralyzed muscles. By changing the pulse width, pulse amplitude, or the pulse frequency, the level of contraction can be altered to perform a specific task. To provide functional use of the paralyzed limbs, an appropriate electrical stimulation pattern should be delivered to a set of muscles.

A major impediment to stimulating the paralyzed neuromuscular systems and determining the stimulation pattern has been the highly nonlinear, time-varying properties of electrically stimulated muscle, muscle fatigue, spasticity, and day-to-day variations that limit the utility of prespecified stimulation pattern and open-loop FNS control system. To deal with these problems, many control strategies have been developed, tested, and reported in the literature, including fixed-parameter feedback controller [6], [7], adaptive feedback techniques [8]–[11], fixed-parameter feedforward [12], [13], and adaptive feedforward [13]–[18]. Moreover, in some studies, the combination of feedforward and feedback control techniques have been proposed [12], [13], [19] to utilize the advantages of both controller. In particular, Chang et al. [12] used a time-invariant multilayered feedforward neural network to model the inverse of the muscle–joint dynamics for direct feedback control. To compensate for the residual tracking errors, a fixed-parameter proportional integral derivative (PID) feedback controller was also added that was designated as a neuro-PID controller. The results on one able-bodied and one paraplegic subject showed that the tracking performance of the neuro-PID is slightly better than that of PID controller alone and neural feedback controller alone. The same result was reported by Kurosawa et al. [19] while an adaptive neural network was used as the feedback controller and a PID as the feedback component for controlling the palmar/dorsi-flexion angle of the wrist.

Ferrarin et al. [13] employed four different control strategies including fix-parameter feedforward, fix-parameter feedback using PID, combination of fixed-parameter feedback (e.g., PID) and feedforward, and an adaptive feedback controller to control the movement of the freely swinging shank. The results of simulations and experiments on two paraplegic subjects showed that the adaptive controller provides a better performance than the other three controllers with fixed parameters. The performance of combined feedback and feedforward controller is better than that of feedback alone and feedforward
alone. This result is in accordance with the work of Chang et al. [12].

All the earlier mentioned works indicate that the tracking quality was improved by the use of the adaptive control law compared to the nonadaptive one. Adaptive control, by online tuning the parameters (of either the plant or the controller—corresponding to indirect or direct adaptive control), can deal with uncertainties, but generally suffers from the disadvantage of being able to achieve only asymptotical convergence of the tracking error to zero. Generally, this algorithm is based on the assumption that the structure of the system model is known with unknown system slow-varying parameters and the parameters appear linear. Several issues, such as transient performance, un-modeled dynamics, disturbance, the amount of offline training required, the tradeoff between the persistent excitation of signals for correct identification and the steady system response for control performance, the model convergence and system stability issues in real applications, and nonlinearity in parameters, often complicate the adaptive approach [20]–[23].

A useful and powerful robust control scheme to deal with the uncertainties, nonlinearities, and bounded external disturbances is the sliding-mode control (SMC) [24]. These uncertainties may come from unmodeled dynamics, variations in system parameters, or approximations of complex plant behaviors. In robust control designs, a fixed control law based on a priori information on the uncertainties is designed to compensate for their effects, and exponential convergence of the tracking error to a (small) ball centered at the origin is obtained. Robust control has some advantages over the adaptive control, such as its ability to deal with disturbances, quickly varying parameters, and unmodeled dynamics [24]. Nevertheless, the SMC suffers from the high-frequency oscillations in the control input, which is called “chattering” [25].

In order to limit the chattering phenomena and preserve the main advantages of the original SMC, we propose a new SMC by combining adaptive control and neural network with SMC for control of muscle–skeletal systems using functional electrical stimulation in paraplegic subjects. The proposed scheme directly results in chattering free control action for the corrective control. The main motivation for this study is to develop a control scheme for FNS systems that results in stable, repeatable, regulated muscle input-output properties over a wide range of conditions of muscle length, electrode movement, potentiation, fatigue, day-to-day variations, different movement patterns, and different disturbances.

II. SLIDING-MODE CONTROL

Consider the following nonlinear system:

\[
\ddot{x} = f(x,t) + b(x,t) \cdot u(t)
\]

(1)

where \(f(x,t)\) and control gain \(b(x,t)\) are unknown nonlinear functions, \(x(t)\) is the state variable to be controlled, and \(u(t)\) the control input. The objective of the controller is to design a control law to force the system state variable to track the desired state trajectory \(x_d(t)\) in the presence of model uncertainties and external disturbances. We first define a sliding surface as follows:

\[
s(e,t) = \left(\frac{d}{dt} + \lambda \right)^2 \left(\int_0^t e(r) \, dr \right) = 0
\]

(2)

where \(e\) is the state error and \(\lambda\) a positive constant. By solving the equation \(\dot{s} = 0\) for the control input using (1), we obtain the following expression for \(u(t)\), which is called equivalent control

\[
u_{eq}(t) = \frac{1}{b(x,t)} \cdot \left(-\hat{f}(x) + \hat{x}_e(t) - 2 \lambda \hat{e}(t) - \lambda^2 e(t) \right)
\]

\[
= \frac{1}{b(x,t)} \cdot \hat{u}(t)
\]

(3)

where \(\hat{f}\) and \(\hat{b}\) are estimations of nonlinear functions \(f\) and \(b\), respectively, with the bounded estimation errors. The equivalent control keeps the system states on the sliding surface, once they reach it. Hence, if the states are outside the sliding surface, to drive the states to the sliding surface in finite time, the control law is chosen such that

\[
\frac{1}{2} \frac{d}{dt} s^2 \leq -\eta \left| s \right|
\]

(4)

where \(\eta\) is a strictly positive constant and (4) is called reaching condition [24]. To satisfy the reaching condition, one may choose the following corrective control [24], which is added to the equivalent control

\[
u_c = -k \cdot \text{sgn}(s), \quad k > 0
\]

(5)

where \(\text{sgn}(s)\) denotes the sign of sliding variable. Hence, the whole control input \(u_1\) is a combination of \(u_{eq}\) and \(u_c\) as

\[
u_1(t) = \frac{1}{b(x,t)} \cdot \left[\hat{u}(t) - k \cdot \text{sgn}(s) \right].
\]

(6)

This control law leads to high-frequency control switching and chattering across sliding surface. The term “chattering” describes the phenomenon of finite-frequency, finite-amplitude oscillations appearing in many sliding mode implementations. The chattering caused by high-frequency switching control activity is highly undesirable because it leads to low control accuracy and may excite unmodeled high-frequency plant dynamics that could result in unpredictable instability [25]. To overcome this problem, the SMC strategy deserves special attention, because this method provides a systematic approach to maintain asymptotic stability and consistent performance.

A simple method for alleviation of chattering is using a suitable boundary layer around the sliding surface, in which the switching function is approximated by a linear feedback gain when the state trajectory lies within the boundary layer [24]–[26]. Within the boundary layer, the system no longer behaves as dictated by SMC. By introducing boundary layer, chattering can be reduced, but tracking performance and robustness are compromised.

The conventional SMC with boundary layer has been already used for control of knee joint angle in a healthy subject [27]. However, conventional SMC suffers from chattering and poor tracking accuracy. Jezernik et al. [28] reported the use of sliding-mode closed-loop controller for the control of knee joint angle. To reduce the chattering, they replaced the discontinuous term,
By a continuous one, \(k \cdot s \) in sliding control law. In this case, the finite-time convergence of sliding variable to zero cannot be guaranteed and \(\eta \)-reachability condition will be violated.

III. METHODS

One commonly used method to eliminate the effects of chattering is to replace the switching control law by a saturating approximation [24] within a boundary layer around the sliding surface. Inside the boundary layer, the discontinuous switching function is approximated by a continuous function to avoid discontinuity of the control signals. Even though the boundary layer design can alleviate the chattering phenomenon, this approach, however, provides no guarantee of convergence to the sliding mode and involve a tradeoff between chattering and robustness, and results in the existence of the steady-state error.

For solving this drawback, we employed a control methodology that is based on synergistic combination of adaptive control and neural network with SMC. If the system uncertainties are large, the sliding-mode controller would require a high switching gain (5) \(k \) with a thicker boundary layer to eliminate the higher chattering effect resulting. However, if we continuously increase the boundary layer thickness, we are actually reducing the feedback system to a system without sliding mode. For smoothness of the control signals, a large boundary layer width is required, but for better control accuracy, a small boundary layer width is preferred. To avoid such a condition, it is necessary to keep switching gain to a small value. The only way to decrease the switching gain \(k \) is to decrease the system uncertainty. To decrease the uncertainty, an accurate model of the system is required. For this purpose, we coupled a recurrent neural network (RNN) with online learning into the SMC to model the uncertainties and provide an auxiliary equivalent control for compensating the uncertainties. Moreover, inside the boundary layer, the switching function was replaced by a neural network controller. The control law will be switched from the SMC to neural control, when the state trajectory of system enters some boundary layer around the sliding surface. The online updating the network parameters is performed in such a way that the output tracking error asymptotically converges to zero.

A. SMC With Adaptive Modeling of Uncertainty

It is well known that the model uncertainty may arise from insufficient information about the system or from the purposeful simplification of mathematical model representation of plant (or unstructured uncertainties) and from inaccuracies on the terms actually included in the model (or structured uncertainties). Accordingly, (1) may be represented by

\[
\dot{x} = f(x, t) + \Delta f(x, t) + b(x, t) \cdot u(t)
\]

(7)

where \(\Delta f(x, t) \) represents process uncertainties, unmodeled dynamics, and external disturbances. In this study, we used the earlier canonical form to describe the knee joint dynamics. The module \(f(x) \) represents the passive component of knee–joint dynamics utilizing the prior knowledge. The second module \(\Delta f(x, t) \) uses a time-varying neural network to represent the structured and unstructured uncertainties. The third module represents the active dynamics of the muscle. By solving \(\dot{s} = 0 \) (2) for the control input using (7), we obtain the following expression for equivalent control:

\[
u_{eq}(t) = \frac{1}{b(x, t)} \times \left(-f(x, t) - \Delta f(x, t) + \ddot{x}_{d}(t) - 2\lambda \dot{e}(t) - \lambda^2 e(t) \right). \]

(8)

The whole control input \(u_1 \) applied to the muscle would be combination of \(u_{eq}(8) \) and \(u_c(5) \).

Modeling Knee Joint Dynamics: To design the controller, the knee joint dynamics is first represented by the following second-order nonlinear equation:

\[
\dot{\theta} = f(\theta, \dot{\theta}) + \Delta f(\theta, \dot{\theta}, t) + b \cdot u(t)
\]

(9)

where \(\theta \) and \(u \) denote the knee angle and the stimulation intensity, respectively. The nonlinear function \(f(\theta, \dot{\theta}) \) represents the passive moments acting at the knee as follows:

\[
f(\theta, \dot{\theta}) = \frac{1}{J} \left(M_{gra}(\theta) + M_{vis}(\theta) + M_{el}(\dot{\theta}) \right).
\]

(10)

Here, \(M_{gra}(\theta) \), \(M_{vis}(\theta) \), and \(M_{el}(\dot{\theta}) \) are gravitational, elastic, and viscous components, respectively. These passive moments were calculated from following equations [30]:

\[
M_{gra}(\theta) = -mgl \sin(\theta)
\]

(11)

\[
M_{vis}(\theta) = -K_v \exp(-K_v(\theta - \theta_3))
\]

(12)

\[
M_{el}(\dot{\theta}) = -B_1 sgn(\dot{\theta}) \left| \dot{\theta} \right|^{B_2}
\]

(13)

where \(l \) is the distance between knee and center of mass and \(m \) is the mass of the shank–foot complex. A pendulum trial without stimulation was performed to identify stiffness and damping parameters. Offline identification of these parameters was performed by a nonlinear least square method. A stochastic pulsewidth stimulation signal in constant amplitude used for calculating the bounds of \(b \) and geometric mean of the estimated lower and upper bound of the control gain for estimating \(b \) [24]. The parameters were identified during the first experiment and used for subsequent experiments on different days.

Modeling Uncertainties: The nonlinear function \(\Delta f(\theta, \dot{\theta}, t) \) represents the system uncertainties including system parameter variations, disturbances, and unmodeled dynamics (e.g., activation dynamics, nonlinear recruitment, muscle fatigue, and multiplicative nonlinear torque–angle and torque–velocity scaling factors). In this study, an RNN with single hidden layer is used to model the system uncertainties. The RNN that involves dynamic elements in the form of feedback loop has a profound impact on the learning capability and performance of the network [31]. Moreover, the feedback loops that feedback the lagged outputs of the neurons to the inputs of neurons, enable the network to perform dynamic mapping and learning tasks that extends over the time. The architecture of the RNN takes many different forms [31]. In this study, we use recurrent multilayer perceptron with single hidden layer, as illustrated in Fig. 1.
The network contains recurrent connections from the hidden neurons to a layer consisting of unit delays. The output of unit-delay layer is fed to the input layer. We may then describe the dynamic behavior of the network by the following equations:

\[
y(t + 1) = \kappa \left(\sum_{i=1}^{q} c_i g_i(t) \right)
\]

\[
g_i(t) = \kappa \left(\sum_{j=1}^{p} w_{ji} x(t - j + 1) + \sum_{k=1}^{q} v_{ki} g_k(t - 1) \right)
\]

(14)

where \(\kappa(\cdot)\) is a nonlinear activation function characterizing the hidden and output units, \(g_i(t)\) is the response of the \(i\)th hidden unit, and \(c_i\) is its connecting weight to the output unit. The weight vectors \(w\) and \(v\) are the connecting weights of the input units and unit-delay units to the hidden units, respectively. The parameters \(\Phi = (w,v,c)\) were adjusted by using the standard backpropagation learning algorithm [31]. The cost function \(J\) is defined by

\[
J(t) = \frac{1}{2} e^2(t)
\]

(15)

where \(e\) is error function defined by

\[
e(t) = \dot{\theta} - \ddot{\theta}_d = \hat{f}(\theta, \dot{\theta}) + \Delta \hat{f}(\theta, \dot{\theta}, t) + \hat{b} \cdot u(t) - \ddot{\theta}_d.
\]

(16)

Considering the gradient descent method, the adaptation rule can be described as follows:

\[
\Phi(t + \Delta t) = \Phi(t) - \tau \frac{\partial J(t)}{\partial \Phi(t)} = \Phi(t) - \tau \cdot e(t) \cdot \frac{\partial \Delta \hat{f}(t)}{\partial \Phi(t)}
\]

(17)

where \(\tau\) is the learning rate parameter.

B. Neural Control

In order to eliminate high-frequency control and chattering around sliding surface, a single-neuron controller based on the method proposed in [29] is used here. The output of the neuron is given by

\[
u_2 = h(\text{net}) = \alpha \frac{1 - \exp(-\beta \cdot \text{net})}{1 + \exp(-\beta \cdot \text{net})}
\]

(18)

\[\text{net} = \varepsilon + \dot{\varepsilon} - \gamma
\]

(19)

where \(\varepsilon\) is the state error (i.e., \(\varepsilon = \theta - \theta_d\)), \(\gamma\) is the threshold, and \(\text{net}\) denotes neuron input. For online adaptation of the network parameters, \(\Gamma = [\alpha, \beta, \gamma]^T\), the following Lyapunov function \(E\) is defined

\[E = \frac{1}{2} \varepsilon^2.
\]

The aim of control is to minimize \(E\) by updating the neural controller parameters \(\Gamma\). It was shown that by using the following adaptation rule [29], the output tracking error asymptotically converges to zero

\[
\dot{\Gamma} = -\mu \cdot \varepsilon(t) \cdot \frac{\partial u_2}{\partial \Gamma} \cdot \text{sgn} \left(\frac{\partial \theta}{\partial u} \right)
\]

(20)

where \(\mu > 0\) is the learning rate parameter and \(\text{sgn}(\cdot)\) is a sign function.

C. Neuro-SMC

The structure of neural SMC that is based on the combination of neural network and sliding mode is schematically shown in Fig. 2, where \(u_1\) is the SMC output defined in (6) and (8) and \(u_2\) is the neuron output defined in (18). Controller output is a function of \(u_1\) and \(u_2\) defined by

\[
u = \begin{cases}
 u_1, & \text{if } |s(e)| > \phi + \xi \\
 \delta(e) u_1 + (1 - \delta(e)) u_2, & \text{if } \phi < |s(e)| \leq \phi + \xi \\
 u_2, & \text{if } |s(e)| \leq \phi
\end{cases}
\]

(21)

where \(s(e)\) is a scalar function described in (2), \(\phi\) and \(\xi > 0\) are the boundary layer thicknesses, and \(\delta(e)\) is a function of error and is adapted by

\[
\delta(e) = \frac{|s(e)| - \phi}{\xi}.
\]

(22)
A model of musculoskeletal presented in [14] was used here as a virtual patient in simulation studies. The model of electrically stimulated muscle used in this study included an input delay, nonlinear recruitment, linear dynamics, and multiplicative nonlinear torque–angle and torque–velocity scaling factors. The skeletal model consisted of a one-segment planar system with passive constraints on joint movement. The set of parameters for muscle and skeletal model are taken from [14]. Parameters of the model (9) that was used for control design were estimated in two steps. At the first step, a passive pendulum trial with no stimulation was performed for identification of passive element (10), \(f(\theta, \dot{\theta}) \), using nonlinear least square approach. At the second step, a stochastic pulsedwidth stimulation signal with constant amplitude was used to determine the bounds of \(b \). The parameters were identified during the first simulation and used for all subsequent evaluations. The RNN used here to represent \(\Delta f(\theta, \dot{\theta}, t) \), consisted of ten hidden units and its training was performed online during controlling the joint movement. The root-mean-square (rms) error and normalized rms (nrms) were calculated as a measure of tracking accuracy as follows:

\[
\text{rms} = \sqrt{\frac{1}{T} \sum_{t=1}^{T} (\theta(t) - \theta_d(t))^2}
\]

\[
\text{nrms} = \frac{1}{\theta_{\text{max}} - \theta_{\text{min}}} \sqrt{\frac{1}{T} \sum_{t=1}^{T} (\theta(t) - \theta_d(t))^2} \times 100.
\]

Fig. 3(a) and (b) shows the results of the conventional SMC of the knee joint angle in virtual patient for two different values of boundary layer width. The high control activity and the chattering due to SMC [Fig. 3(a), rms error 4.8° (8%)] are clearly observed. Moreover, increasing the boundary layer thickness reduces chattering but increases the tracking error [Fig. 3(b), rms error 8.9° (14.8%)]. The result of knee joint angle control using neuro-SMC is shown Fig. 3(c) [rms error 2.7° (4.5%)]. It is observed that the chattering of control signals produced by SMC is effectively eliminated even with a thinner boundary layer. It is apparent that the proposed control strategy is able to provide remarkably fast and robust tracking with a smooth control action.

SMC has been known for its capabilities in accounting for modeling imprecision, parameter variations, and bounded disturbances. To assess the versatility of the neuro-SMC controller, the effects of external disturbance, muscle fatigue, and system parameter variations were evaluated as follows.

Effects of External Disturbances: To evaluate the ability of proposed control strategy to external disturbance rejection, a constant torque in amount of 20 Nm (which is about 40% of maximum generated torque during disturbance-free trial) was subtracted suddenly from the torque generated by the muscle for a duration of 50 s. Fig. 4 shows that excellent tracking performance and fast convergence can be achieved under external disturbances using proposed neuro-SMC [rms error 3.3° (5%)].

Effects of Muscle Fatigue: In FNS application, muscle fatigue can cause degradation of system performance. Fatigue was included in the virtual patient to evaluate the capability of the control strategy to compensate for it. As reported in literature, fatigue can cause approximately 50% reduction in peak muscle torque over 100 s [14]. The model of fatigue consisted of an asymptotic decrease in the muscle’s input gain to 44% of its original value over 120 s. Fig. 5 demonstrates that the neuro-SMC can also provide a very good tracking performance during muscle fatigue [rms error is 3.7° (6%) over 120 s].

Effects of System Parameter Variations: To evaluate the performance of controller under system parameter variations, several parameters including mass, length, inertia, stiffness, and damping were varied ±50% from their nominal values (The nominal values were 10 kg, 0.4 m, 0.1 kg-m², 20 N-m°, and 1 N-m-c-s, respectively.) The model of the virtual patient was identified during first simulation with nominal values of system parameter variations.
parameters. Table I summarizes the average tracking error over a wide range of system parameters using the model identified during first simulation with nominal values of system parameters. For the worst trial, tracking error is less than 14.0% (8.2°) and 7.0% (3.9°) using traditional SMC and proposed neuro-SMC, respectively. This interesting result indicates that the proposed control strategy can be used for different subjects without any re-identification of the plant model and can compensate the time-varying properties of neuromuscular dynamics.

V. EXPERIMENTAL EVALUATION

A. Experimental Procedure

Experiments were conducted on five complete thoracic paraplegic (Table II) and four healthy subjects using an eight-channel computer-based closed-loop FNS system [32]. Each subject participated in three experiment sessions. Each session was conducted on a different day and consisted of at least five trials with intertrial resting interval at least 5 min. Duration of each trial is 120 s for normal test and 180 s for fatigue test. The paraplegic subjects were active participants in a rehabilitation research program involving daily electrically stimulated exercise of their lower limbs (either seated or during standing and walking). The subject was seated on a bench with his hip flexed at approximately 90°, while the shank was allowed to swing freely. The quadriceps muscle was stimulated using adhesive surface elliptical electrodes (5 × 10 cm GymnUniphy electrodes, COMEPA Industries, Belgium) that were placed just proximally over the estimated motor point of rectus femoris and the approximately 4-cm proximal of the patella. Pulsedwidth modulation (from 0 to 700 µs) with balanced bipolar stimulation pulses, at a constant frequency (25 Hz) and constant amplitude was used. An electrogoniometer (model SG150, Biometrics Ltd., Gwent, U.K.) is fixed on the knee joint to measure the knee joint position. The measured signals were sampled at 1 kHz by a 12-bit analog-to-digital converter (Advantech PCI-1711 I/O card).

The computer-based closed-loop FNS system uses MATLAB Simulink (THE MATHWORKS, 1998–2000), Real-Time Workshop, and Real-Time Windows Target under Windows 2000/XP for online data acquisition, processing, and controlling. The proposed control strategy was implemented by S-functions using C.

Two different types of desired movement trajectories were used to evaluate the stability and tracking performance of the proposed strategy. The first one was a ramp-hold-ramp trajectory corresponding to real walking trajectory movement with a period of 20 s and a duty cycle of 70% [14 s ON (movement
TABLE I
SUMMARY OF RMS ERROR OBTAINED DURING SYSTEM PARAMETER VARIATIONS USING TRADITIONAL SMC AND PROPOSED NEUROADAPTIVE SMC

<table>
<thead>
<tr>
<th>Controller</th>
<th>Mass (kg)</th>
<th>Length (m)</th>
<th>Inertia (kgm²)</th>
<th>Stiffness (Nm/°)</th>
<th>Damping (Nm/°/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional SMC</td>
<td>10 ± 5</td>
<td>0.4 ± 0.2</td>
<td>0.1 ± 0.05</td>
<td>20 ± 10</td>
<td>1 ± 0.5</td>
</tr>
<tr>
<td>Neuro-Adaptive SMC</td>
<td>< 6.5°</td>
<td>< 5.9°</td>
<td>< 5.1°</td>
<td>< 8.2°</td>
<td>< 5.2°</td>
</tr>
</tbody>
</table>

The parameters were varied ±50% from their nominal values.

B. Experimental Results

The identification of knee joint dynamics was conducted in the same way as the simulation study. First, a passive pendulum trial with no stimulation was performed for identification of passive element \(f(\theta, \dot{\theta}) \), using nonlinear least square approach. Next, a stochastic pulsewidth stimulation signal with constant amplitude was used to determine the parameter \(b \). The \(f(\theta, \dot{\theta}) \) and \(b \) were identified during first session of experiment on one subject. The values of identified parameters were used for subsequent experiment sessions on different days for all subjects. The adaptation of RNN was performed during online control without any offline training.

Examples of joint angle trajectories obtained with traditional SMC and neuro-SMC on a healthy subject are shown in Fig. 6. The chattering effect of conventional SMC that is caused by high-speed switching control can be clearly observed [Fig. 6(a), rms error 5.49° (9%)]. Although increasing the boundary layer thickness can reduce the chattering effects, but it causes the tracking error to be increased [Fig. 6(b), rms error 6.67° (11%)]. Excellent tracking performance with no chattering is achieved using proposed neuro-SMC [Fig. 6(c) rms error 2.56° (4%)]. An interesting observation is the fast convergence of proposed method. The actual joint angle converges to its desired trajectory within about 2 s.

Fig. 7 shows the same information as in Fig. 6 when the experiments were conducted on paraplegic subject RR. Although the boundary layer approach was used to eliminate the chattering, the effects of high switching activity are noticeable [Fig. 7(a)]. It is observed that the control signal increases and reaches its maximum value, while the joint angle could not track the desired trajectory [Fig. 7(a)]. This observation indicates the early induction of muscle fatigue. In contrast, an accurate tracking of desired motion with no chattering was obtained using proposed neuro-SMC on paraplegic subject RR [Fig. 7(b), rms error 3.54° (6%)]. The results obtained from Figs. 6 and 7 clearly indicate the superior performance of proposed method with respect to classical SMC. Fig. 8 shows typical tracking results obtained
using neuro-SMC with adaptive modeling of uncertainty for other paraplegic subjects. The most interesting observation is the fast convergence of the proposed control strategy. The knee movement trajectory converges to the desired trajectory after about 3 s. The same results were obtained in all experiment trials that were conducted on healthy and paraplegic subjects during different days. A summary of results over 135 trials on healthy and paraplegic subjects (see Table III) indicates that the proposed control strategy was able to achieve a good tracking performance by adapting the stimulation pattern. Average rms tracking error is $3.76^\circ \pm 0.25^\circ$ for a 60° range of movement for able-bodied, while it is $5.41^\circ \pm 0.26^\circ$ for paraplegic subjects.

Muscle Fatigue Compensation: Fig. 9 shows the ability of neuro-SMC to compensate the muscle fatigue for a raised cosine trajectory. The average of rms error is about $3.7^\circ (6.2\%)$ for a 60° range of movement over 3 min. The results show that the method could adjust the stimulation pattern to compensate the muscle fatigue. It is observed that the joint angle trajectory converges to the desired trajectory after about 2 s and tracking performance remains fairly constant throughout the trial. It should be noted that the values of model parameters (14)–(16) were set to the same values that were determined during the first day experiment on one subject and the learning of neural networks performed online without any offline training.

Effects of External Disturbances: Fig. 10 shows the result of external disturbance rejection using neuro-SMC. The disturbance was realized by gently applying a load (1.5 kg) on the ankle at $t = 33$ s and removing it at $t = 73$ s. It is observed that...
TABLE III
SUMMARY OF AVERAGE DAILY RMS TRACKING ERROR (±1 STANDARD DEVIATION) OBTAINED USING PROPOSED NEUROADAPTIVE SMC [(a) HEALTHY SUBJECTS AND (b) PARAPLEGIC SUBJECTS]

<table>
<thead>
<tr>
<th>Subject</th>
<th>Day1</th>
<th>Day2</th>
<th>Day3</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>2.95° ± 0.35°</td>
<td>3.17° ± 0.32°</td>
<td>2.90° ± 0.37°</td>
</tr>
<tr>
<td>ME</td>
<td>3.72° ± 0.47°</td>
<td>3.08° ± 0.14°</td>
<td>2.85° ± 0.27°</td>
</tr>
<tr>
<td>KM</td>
<td>4.72° ± 0.15°</td>
<td>4.78° ± 0.13°</td>
<td>3.61° ± 0.19°</td>
</tr>
<tr>
<td>HK</td>
<td>4.39° ± 0.29°</td>
<td>4.45° ± 0.15°</td>
<td>4.52° ± 0.21°</td>
</tr>
<tr>
<td>Mean</td>
<td>3.76° ± 0.25°</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a)

<table>
<thead>
<tr>
<th>Subject</th>
<th>Day1</th>
<th>Day2</th>
<th>Day3</th>
</tr>
</thead>
<tbody>
<tr>
<td>RR</td>
<td>5.59° ± 0.19°</td>
<td>5.34° ± 0.10°</td>
<td>4.45° ± 0.23°</td>
</tr>
<tr>
<td>MH</td>
<td>6.40° ± 0.17°</td>
<td>4.92° ± 0.15°</td>
<td>4.69° ± 0.28°</td>
</tr>
<tr>
<td>HA</td>
<td>5.94° ± 0.30°</td>
<td>5.44° ± 0.23°</td>
<td>4.81° ± 0.32°</td>
</tr>
<tr>
<td>RO</td>
<td>5.85° ± 0.33°</td>
<td>5.34° ± 0.55°</td>
<td>5.37° ± 0.17°</td>
</tr>
<tr>
<td>MS</td>
<td>6.01° ± 0.23°</td>
<td>5.03° ± 0.30°</td>
<td>6.04° ± 0.31°</td>
</tr>
<tr>
<td>Mean</td>
<td>5.41° ± 0.26°</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(b)

An important result observed is the fast convergence of the control system. The knee movement trajectory converges to the desired trajectory after about 2 s. This observation is the direct consequence of the exponential convergence rate of tracking error in SMC. In contrast, adaptive control is able to achieve only asymptotic convergence. Riess and Abbas [16] who used an adaptive feedforward controller for controlling the knee joint angle to track a raised cosine trajectory, reported that the tracking error for the first few cycle was very large and reduced to within 10% after an average of 30 cycles (75 s). In [13], the results of two experimental trials on two paraplegic subjects using an adaptive feedforward controller showed that controller took more than 20 s to converge.

The most current adaptive controllers for FES applications required pretraining and offline identification before they could be used to control the limbs (e.g., see [12], [13], and [19]). Ferrarin et al. [13] used a Hill-based model of knee joint dynamics to develop an adaptive feedforward controller. The model was identified in several separate experiments [33], [34] that makes the parameter identification to be complex. Kurosawa et al. [19] who used an adaptive feedforward neural controller for controlling the palmar/dorsiflexion angle of the wrist, reported that the untrained controller is almost identical to the PID controller and learning iteration was shortened if the feedforward controller had been trained in advance with the artificial forward model. The burdens of pretraining may hinder the clinical applications of these methods.

A major contribution of our work in this study is that the proposed control scheme does not require re-identification of the plant model during different experiment sessions, different experiment days, and even for applying the controller on the new subjects. Two neural networks that were coupled into the SMC were trained online during applying the controller on paralyzed limb without any pretraining or offline training. The knee movement trajectory will converge to the desired trajectory after about 2 s. This observation has great implications for clinical applications and is the results of robustness of SMC to model uncertainties.

The results presented here have been verified only for control of movement in a single joint. The extension of the study to control of cyclic movement, standing up, sitting down, and free
support standing using the proposed control strategy constitutes the key issues of our current research.

REFERENCES

